## УДК 621.43.013

Е.П. Воропаев, инж.

# МОДЕЛИРОВАНИЕ ВНЕШНЕЙ СКОРОСТНОЙ ХАРАКТЕРИСТИКИ ДВИГАТЕЛЯ СПОРТБАЙКА SUZUKI GSX-R750

## Введение

Применение трехмерных газодинамических моделей в проектировании поршневых ДВС позволяет серьезным образом оптимизировать характеристики газовоздушного тракта. Однако верификация этих моделей и их конкретных программных реализаций требует трудоемких экспериментальных исследований. Вместе с тем, о достоверности модели можно также судить по характеристикам конечных интегральных параметров двигателя (например, коэффициент наполнения  $\eta_v$ ), протекание которых существенным образом зависит от моделируемого процесса. Для этих целей наиболее предпочтительны гоночные двигатели, т.к. у них наиболее широкий диапазон режимов работы. Последнее влечет за собой образование существенно отличающейся картины колебаний в газовоздушном тракте на режимах. Это обстоятельство будет предъявлять к модели более высокие требования.

#### Анализ последних достижений и публикаций

На сегодняшний день, в части моделирования газодинамических процессов в ДВС известна работа [1]. Из данной работы следует, что авторами предлагается модель, описывающая 3-х мерные течения теплопроводного вязкого газа. В своих исследованиях авторы больше останавливаются на тщательном моделировании отдельных элементов газовоздушного тракта.

В настоящей публикации используется модель, изначально разрабатывавшаяся для моделирования всего газовоздушного тракта, включая все цилиндры, объединенные общей впускной, или выпускной системой. Предлагаемая модель не учитывает теплоперенос и вязкостные эффекты, однако эти упрощения позволили проводить оптимизационные расчеты всего двигателя в приемлемые, для инженерной практики, сроки.

#### Постановка задачи

Целью данного исследования является моделирование внешней скоростной характеристики двигателя спортбайка SUZUKI GSX-R750 с последующим анализом и сравнением результатов с экспериментальными данными. Двигатель спортбайка – четырехтактный, четырехцилиндровый, с четырмя клапанами на цилиндр и с системой распределенного впрыска топлива. Рабочий объем двигателя – 0,7492 л. Номинальная частота вращения – 12000...13000 мин<sup>-1</sup>. Номинальная мощность, указываемая производителем – 88...103 кВт (в зависимости от года выпуска модели). Система выпуска оснащена нейтрализатором, установленным в глушителе, и системой подачи дополнительного воздуха.

Для сравнительного анализа использовалась стендовая внешняя характеристика, опубликованная в журнале SuperBike Nov/1999 [2]. Её значения занесены в табл. 1. Хочется сразу высказать следующие соображения: 1) замер характеристики на стенде (максимальная мощность – 87,5 кВт) наверняка проводился без обеспечения скоростного напора воздуха; 2) мощность, указываемая производителем, наверняка дается с использованием скоростного напора. Моделирование производилось в условиях испытания на стенде – без скоростного напора.

Модель газодинамики – 3-мерная, решение системы уравнений – по методу крупных частиц [3,4]. Геометрические параметры газовоздушного тракта и других необходимых деталей двигателя были сняты с реального мотоцикла. Принимая во внимание «экстремальность» двигателя, сеточная модель формировалась с особой тщательностью, например: были «выложены» входные леминискаты впускных патрубков, в выпускной системе была выполнена соответствующая перемычка между первичными трубами 2-го и 3-го цилиндров, а модель головки цилиндров была реально 16-клапанной. В сеточной модели была в точности повторена также разница в 30 мм в длинах впускных патрубков для внутренних и наружных цилиндров.

Расчетная область включала в себя: воздушный фильтр, полость воздушного фильтра, впускные патрубки, четыре цилиндра, выпускные трубы, первая камера глушителя с нейтрализатором.

Мощность расчетной сетки составила 2,436 млн. ячеек. Размер ячейки составил 2х2х2 мм. Время счета одного цикла (два оборота коленчатого вала) на микропроцессоре Core 2 Duo 6300 составило: от 7 часов на 12000 мин<sup>-1</sup> до 47 часов на 2000 мин<sup>-1</sup>.

Фазы газораспределения – 25 и 73 град п.к.в. для впуска, 59 и 37 для выпуска – соответствуют указанным в описании. Предполагаемые профили кулачков и диаграмма газораспределения были получены расчетным путем.

#### Результаты моделирования

Был выполнен расчет двенадцати режимов внешней скоростной характеристики: от 2000 – до 13000 мин<sup>-1</sup>. Основные результаты моделирования сведены в табл. 1, рис. 1, а некоторые диаграммы процессов газообмена – на рис. 2÷8.

Использованы следующие обозначения: Ne – эффективная мощность, G<sub>s.выбр</sub> – количество смеси, выброшенной обратно из цилиндра в конце впуска,

 $G_{s.3a6p}$  - количество отработавших газов, заброшенных во впускной коллектор в начале открытия впускного клапана,  $G_{r.возвр}$  - количество отработавших газов, вернувшихся обратно в цилиндр перед закрытием выпускного клапана,  $\Delta P_{B\Pi}$  – разрежение во впускном коллекторе,  $\Delta P_{\Gamma \Pi}$  – давление перед глушителем,  $T_{\Gamma \Pi}$  – средняя температура газов перед глушителем,  $N_m$  и  $\eta_m$  – мощность механических потерь и механический КПД, Р – давление в цилиндре,  $P_{B\Pi}$  и  $P_{Bы\Pi}$  – средние давления в сечениях перед впускным клапаном и за выпускным клапаном,  $P_{\Gamma\Pi}$  и  $P_{B\Phi}$  – средние давления в сечениях перед глушителем и за воздушным фильтром.

Во время моделирования, при переходе от режима к режиму, изменялись только три параметра: коэффициент избытка воздуха α, параметры сгорания и степень подогрева воздуха на впуске ΔТ<sub>вп</sub>.

Степень подогрева воздуха на впуске отличается от нуля только на режимах от 5000 мин<sup>-1</sup> и ниже, причем с уменьшением оборотов – возрастает.

Расчет процесса сгорания производился по специальной методике [5]. Параметры, характеризующие процесс сгорания – момент максимальной скорости тепловыделения «FI(dx/dφ)max» (град. п.к.в.) и доля выгоревшего топлива к моменту прохода поршнем примерно одну треть пути от BMT «x(S=1/3)» - приведены в табл. 1.

По продолжительности сгорания  $\phi_{crop}$  видно, что процесс сгорания начинает затягиваться уже с 7000 мин<sup>-1</sup>. Это объясняется тем, что вся система газообмена оптимизирована под режим 12000 мин<sup>-1</sup>. В частности это касается больших проходных сечений каналов. На малых же режимах, это приводит к значительному уменьшению скоростей потока на впуске и как следствие – к уменьшению турбулентности к началу воспламенения.

| Рабочие процессы ДВС | Рабочие | процессы | ДВС |
|----------------------|---------|----------|-----|
|----------------------|---------|----------|-----|

| <b>p</b> www <sup>-1</sup>                              |                            | 2000  | 3000  | 4000  | 5000  | 6000  | 7000          | 8000  | 9000  | 10000 | 11000       | 12000 | 13000       |       |
|---------------------------------------------------------|----------------------------|-------|-------|-------|-------|-------|---------------|-------|-------|-------|-------------|-------|-------------|-------|
| п, мин                                                  |                            | 2000  | 15.5  | 4000  | 3000  | 25.2  | /000          | 57.4  | 9000  | 70.9  | P2 0        | 97.5  | 13000       |       |
| N <sub>e</sub> замер, кВт                               |                            | 8,09  | 15,5  | 1 2   | 5 1   | 35,3  | 40,0          | 57,4  | 04,/  | 19,8  | 83,9<br>2 2 | 87,5  | <u>80,9</u> |       |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ |                            |       |       |       |       |       |               |       |       |       | -1,2        |       |             |       |
|                                                         | исходные данные по режимам |       |       |       |       |       |               |       |       |       |             |       |             |       |
|                                                         | α                          |       | 0,85  | 0,87  | 0,88  | 0,89  | 0,90          | 0,91  | 0,92  | 0,93  | 0,93        | 0,93  | 0,93        | 0,93  |
| Фсгор                                                   |                            | 140   | 130   | 110   | 100   | 93    | 93            | 87    | 83    | 80    | 77          | 77    | 77          |       |
| $FI(dx/d\phi)max$                                       |                            | 26    | 27    | 22    | 21    | 17    | 17            | 14    | 12    | 11    | 10          | 10    | 10          |       |
| x(S=1/3), %                                             |                            | 89,5  | 91,7  | 97,4  | 99,1  | 99,7  | 99,7          | 99,8  | 99,8  | 99,8  | 99,8        | 99,8  | 99,8        |       |
| Δ                                                       | Ι <sub>ΒΠ</sub> , `        | C     | 16    | 10    | 6     | 3     | 0             | 0     | 0     | 0     | 0           | 0     | 0           | 0     |
| РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ                                |                            |       |       |       |       |       |               |       |       |       |             | Я     |             |       |
|                                                         | среднее                    |       | 8,97  | 14,66 | 22,36 | 32,46 | 36,01         | 40,98 | 52,78 | 63,06 | 78,41       | 85,74 | 88,52       | 79,91 |
| N                                                       | -                          | 1     | 9,12  | 13,57 | 22,53 | 32,69 | 35,59         | 41,41 | 54,01 | 61,34 | 80,20       | 86,82 | 92,12       | 78,07 |
| кВт                                                     | ИЛ.                        | 2     | 8,87  | 15,72 | 22,17 | 32,30 | 36,33         | 40,49 | 51,47 | 64,66 | 76,08       | 84,25 | 85,80       | 82,41 |
| KD1                                                     | цц                         | 3     | 8,83  | 15,85 | 22,35 | 32,32 | 36,51         | 40,49 | 51,20 | 66,50 | 77,04       | 85,72 | 86,53       | 82,04 |
|                                                         | Z                          | 4     | 9,04  | 13,52 | 22,42 | 32,57 | 35,67         | 41,62 | 54,53 | 59,86 | 80,43       | 86,31 | 89,77       | 77,19 |
| g <sub>e</sub> ,                                        | г/кВт                      | *ч    | 319,6 | 299,5 | 273,3 | 260,3 | 254,0         | 257,1 | 250,4 | 246,9 | 247,9       | 251,8 | 262,5       | 281,1 |
|                                                         | сред                       | нее   | 0,709 | 0,740 | 0,782 | 0,873 | 0,797         | 0,796 | 0,883 | 0,935 | 1,050       | 1,061 | 1,046       | 0,933 |
|                                                         |                            | 1     | 0,720 | 0,691 | 0,790 | 0,878 | 0,789         | 0,800 | 0,897 | 0,910 | 1,076       | 1,071 | 1,084       | 0,916 |
| η                                                       | ИЛ.                        | 2     | 0,702 | 0,788 | 0,777 | 0,868 | 0,805         | 0,787 | 0,861 | 0,955 | 1,018       | 1,040 | 1,017       | 0,950 |
|                                                         | а<br>Ц                     | 3     | 0,702 | 0,792 | 0,774 | 0,872 | 0,805         | 0,794 | 0,871 | 0,981 | 1,028       | 1,065 | 1,020       | 0,954 |
|                                                         | ~                          | 4     | 0,714 | 0,690 | 0,787 | 0,875 | 0,790         | 0,804 | 0,903 | 0,892 | 1,078       | 1,067 | 1,064       | 0,913 |
| λ                                                       | среднее                    |       | 0,072 | 0,060 | 0,045 | 0,023 | 0,034         | 0,044 | 0,041 | 0,036 | 0,025       | 0,025 | 0,025       | 0,028 |
|                                                         |                            | 1     | 0,068 | 0,079 | 0,039 | 0,024 | 0,038         | 0,048 | 0,041 | 0,032 | 0,020       | 0,023 | 0,024       | 0,029 |
|                                                         | ЦИЛ                        | 2     | 0,074 | 0,041 | 0,049 | 0,022 | 0,030         | 0,040 | 0,042 | 0,039 | 0,030       | 0,027 | 0,025       | 0,027 |
|                                                         | N <sub>0</sub> 1           | 3     | 0,072 | 0,039 | 0,049 | 0,022 | 0,030         | 0,039 | 0,042 | 0,037 | 0,030       | 0,027 | 0,025       | 0,027 |
|                                                         |                            | 4     | 0,073 | 0,083 | 0,041 | 0,025 | 0,038         | 0,048 | 0,040 | 0,034 | 0,020       | 0,023 | 0,025       | 0,030 |
|                                                         | cpe                        | днее  | 12,95 | 11,14 | 12,21 | 7,10  | 12,99         | 12,71 | 6,80  | 6,90  | 4,31        | 1,18  | 0,32        | 0,19  |
| p, %                                                    |                            | 1     | 11,87 | 12,60 | 10,80 | 6,83  | 12,25         | 10,66 | 7,34  | 6,84  | 6,23        | 1,17  | 0,36        | 0,00  |
| Bbi6                                                    | СИЛ                        | 2     | 12,85 | 9,54  | 13,59 | 7,39  | 14,07         | 14,54 | 6,23  | 7,25  | 2,49        | 1,17  | 0,25        | 0,40  |
| ů                                                       | ۲ <u>ق</u>                 | 3     | 14,67 | 10,09 | 13,54 | /,60  | 13,58         | 14,60 | 6,58  | 6,81  | 2,47        | 1,22  | 0,28        | 0,36  |
|                                                         |                            | 4     | 12,40 | 12,33 | 10,90 | 0,38  | 12,03         | 0.21  | 7,04  | 0,71  | 0,07        | 1,10  | 0,39        | 0,02  |
| <u>`</u> 0                                              | cpe                        | днее  | 3,23  | 1,56  | 0,22  | 0     | 0,09          | 0,31  | 0,53  | 0,18  | 0           | 0,08  | 0           | 0,01  |
| p, 9                                                    | H.                         | 1     | 3,48  | 2,83  | 0,19  | 0     | 0,19          | 0,64  | 0,40  | 0,09  | 0           | 0,06  | 0           | 0,02  |
| s.3a6                                                   | цил                        | 2     | 2,87  | 0,13  | 0,20  | 0     | 0,02          | 0,00  | 0,71  | 0,33  | 0           | 0,11  | 0           | 0,00  |
| 9                                                       | Å                          | 4     | 3.68  | 3 18  | 0.20  | 0     | 0.13          | 0,00  | 0,09  | 0,17  | 0           | 0,09  | 0           | 0.03  |
|                                                         | cpe                        | лнее  | 3,72  | 2,38  | 1,10  | 0.04  | 0,02          | 0,61  | 0,73  | 0,46  | 0.28        | 0.08  | 0           | 0     |
| %                                                       | 1                          | 1     | 3 70  | 3 40  | 1 23  | 0.03  | 0.04          | 0.91  | 0.69  | 0.45  | 0.09        | 0.00  | 0           | 0     |
| 3BD,                                                    | .151                       | 2     | 3.66  | 1.20  | 0.97  | 0.03  | 0.00          | 0.33  | 0.81  | 0.50  | 0.49        | 0.17  | 0           | 0     |
| J <sub>I.BO</sub>                                       | TT I                       | 3     | 3,78  | 1,15  | 0,98  | 0,05  | 0,00          | 0,30  | 0,78  | 0,41  | 0,47        | 0,14  | 0           | 0     |
|                                                         | ž                          | 4     | 3,73  | 3,76  | 1,22  | 0,04  | 0,03          | 0,91  | 0,65  | 0,49  | 0,09        | 0,00  | 0           | 0     |
| G <sub>топл</sub> , кг/ч                                |                            | 2,87  | 4,39  | 6,11  | 8,44  | 9,14  | 10,5          | 13,2  | 15,6  | 19,4  | 21,6        | 23,2  | 22,5        |       |
| $\Delta P_{B\Pi}$ , кПа                                 |                            | 1,257 | 1,716 | 1,561 | 1,827 | 2,063 | 2,475         | 3,192 | 4,353 | 6,724 | 7,107       | 8,169 | 8,151       |       |
| $P_Z *$                                                 | °10, N                     | lПa   | 32,5  | 33,1  | 37,3  | 43,8  | 44,4          | 45,4  | 56,0  | 62,8  | 74,7        | 78,6  | 78,5        | 69,0  |
| $\Delta P_{\Gamma \Pi}$ , кПа                           |                            | 1,017 | 1,023 | 1,050 | 1,073 | 1,071 | 1,105         | 1,166 | 1,206 | 1,321 | 1,393       | 1,464 | 1,454       |       |
| , °С                                                    |                            | 338   | 285   | 584   | 517   | 503   | 554           | 633   | 658   | 6/4   | 683         | 708   | 721         |       |
| N <sub>m</sub> , л.с.                                   |                            | 0,85  | 1,0/  | 2,82  | 4,34  | 0,28  | 8,09<br>0.945 | 0.961 | 13,11 | 19,22 | 23,98       | 29,40 | 33,69       |       |
| $\eta_m$                                                |                            | 0,933 | 0,922 | 0,913 | 0,910 | 0,000 | 0,005         | 0,001 | 0,000 | 0,047 | 0,029       | 0,005 | 0,133       |       |

Таблица 1. Результаты моделирования внешней скоростной характеристики





ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ 1'2008



Рис. 7. Диаграмма газообмена, n=13000 мин<sup>-1</sup>, 2-й и 3-й цилиндры

По характеристике протекания коэффициента наполнения (см. рис. 1) отчетливо видно, что на частотах вращения (10000÷12000) мин<sup>-1</sup> этот показатель превышает единицу. Это объясняется и пониженным давлением за выпускными клапанами (0,07 МПа), и соответствующей волновой настройкой впускных патрубков (см. рис. 7).

Расхождения между экспериментальной характеристикой и расчетной по мощности  $\Delta N_e$  (см. табл. 1) лежат в пределах от 1,3 % до 10 % (среднее – 4,4). Нельзя, конечно, говорить о полном совпадении, но: 1) для такого широкого рабочего диапазона – это тоже удовлетворительный результат; 2) для более детального моделирования – недостаточно исходных и экспериментальных данных.

### Заключение

Представленная модель показала качественно правильное моделирование характеристики столь высокооборотного двигателя: полное совпадение номинальных оборотов, виден характерный для гоночных двигателей прогиб характеристики. Количественно – средние по характеристике расхождения мощности на участке от 2000 до 7000 мин<sup>-1</sup> составляют 5,8 %, от 7000 до 13000 мин<sup>-1</sup> – 2,9 %. Вместе с тем, надо обратить более пристальное внимание процессам с наложением волн (малые и средние частоты вращения).

### Список литературы:

1. Солодов В.Г., Стародубцев Ю.В., Хандримайлов А.А. Численная модель течения вблизи впускного клапана ДВС // Двигатели внутреннего сгорания. – 2004. - №2. – С. 81-84. 2. SuperBike magazine. – Issue 11 November 1999. – Link House Magazines. – С. 43. 3. Белоцерковский О.М., Давыдов Ю.М. Метод крупных частиц в газовой динамике. – М.: Наука. Гл. редакция физ.-мат. литературы, 1982, – 392 с. 4. Воропаев Е.П. Трехмерная газодинамическая модель четырехтактного четырехцилиндрового пориневого ДВС // Двигатели внутреннего сгорания. – 2006. - №2. – С. 54-59. 5. Воропаев Е.П. Модель тепловыделения в пориневом ДВС с принудительным воспламенением для широкого диапазона режимов работы // Вестник двигателестроения. – 2004. - №1. – С. 35-39.

## УДК 621.436

А.М. Левтеров, канд. техн. наук, Л.Л. Левтерова, инж., Н.Ю. Гладкова, инж.

# ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК ДВИГАТЕЛЯ С ИСКРОВЫМ ЗАЖИГАНИЕМ, РАБОТАЮЩЕГО НА БЕНЗОЭТАНОЛЬНЫХ ТОПЛИВНЫХ КОМПОЗИЦИЯХ

Растущий интерес к использованию и производству альтернативных видов топлива (спиртов, эфиров, биогаза) ставит ряд задач перед их производителями и потребителями. Топлива из спиртового