УДК 621.43.013

Е.П. Воропаев, инж.

ВЫБОР РАЦИОНАЛЬНЫХ ПАРАМЕТРОВ ГАЗОВОЗДУШНОГО ТРАКТА АВИАЦИОННОГО ПОРШНЕВОГО ДВИГАТЕЛЯ

Введение

Применение трехмерных газодинамических моделей в проектировании поршневых ДВС позволяет существенно улучшить характеристики газовоздушного тракта (ГВТ). В качестве примера, в настоящей публикации приведен расчет рабочего цикла авиационного поршневого двигателя с различными параметрами впускной и выпускной систем.

Двигатель – 4-х тактный, 4-х цилиндровый, с принудительным зажиганием, выполнен по оппозитной схеме. Система охлаждения – жидкостная. Рабочий объем двигателя - 1649 см³, диаметр цилиндра – 92 мм, ход поршня – 62 мм. Система питания – распределенный впрыск. Механизм газораспределения – штанговый, с общим распределительным валом в картере. Количество клапанов на цилиндр – 2. Степень сжатия – 10,0.

Фазы газораспределения составляют 19 и 67 град п.к.в. для впуска, 56 и 26 град. п.к.в.- для выпуска.

Доводка элементов двигателя выполнялась в рамках опытно-конструкторской работы (ОКР) «Розробка елементів конструкції чотиритактного поршневого двигуна рідинного охолодження» (Договор Минпромполитики № 5-1697/07). Основания для выполнения ОКР: «Комплексна державна програма розвитку авіаційної промисловості України до 2010 року» от 26.08.2008; Письмо Минпромполитики № 01/5-1-60 от 12.08.2008.

Согласно Техническому заданию, двигатель предназначен для установки на вертолете украинской разработки КТ-112 «Кадет».

Анализ последних достижений и публикаций

Для построения оптимальной геометрии газовоздушного тракта можно руководствоваться рекомендациями работы [1]. Автором проведены экспериментально-расчетные исследования различных впускных и выпускных систем для многоцилиндровых двигателей и выведены эмпирические зависимости, дающие хорошую сходимость. Однако проектируемый двигатель существенно отличается как размерностью, так и скоростными режимами. К тому же, применение этих рекомендаций к разветвленным коллекторам с общими участками и полостями вызывает дополнительные трудности. Еще один существенный момент – в [1] использовано условие резонанса, впервые полученное О. Лутцем, которое предполагает мгновенное открытие и закрытие органов газораспределения в НМТ и ВМТ. В проектируемом же двигателе фазы газораспределения приняты довольно широкими, и это необходимо учесть в расчете.

В работе [2] течения на прямолинейных участках рассматриваются как нестационарные одномерные, а для моделирования течений в разветвлениях предложен метод, основанный на численном решении задачи о распаде произвольного разрыва. Этим методом можно, в принципе, решить задачу совмещения и разделения течений, но здесь каждый такой случай требует отдельного рассмотрения и все равно – принятия некоторых коэффициентов и соглашений о соотношениях давлений и скоростей. Переменное же сечение отдельного трубопровода по этой методике учесть очень сложно.

Известна работа В.Г. Дьяченко [3]. Разработанная им методика позволяет уже вести расчет и в каналах переменного сечения, но постановка граничных условий у переменного сечения клапанов попрежнему представляет значительные трудности. К тому же этот метод относительно громоздок как для создания расчетной программы, так и для расчета. Также, ни эта, и ни одна из предыдущих методик не моделируют нестационарный процесс в цилиндре совместно с газодинамическими процессами в коллекторах, а это существенное препятствие (как будет показано далее) к моделированию рабочего цикла двигателей с продолжительным перекрытием фаз газораспределения и тем самым – использованию дополнительных резервов в оптимизации.

В публикации [4] предложена модель трехмерного вязкого турбулентного течения газовой смеси в щели впускного клапана ДВС. Потенциальные возможности данной модели позволяют уже решать практически любые расчетные задачи в коллекторах любой формы и конфигурации. Однако, насколько можно судить из работы, авторы больше останавливаются на тщательном моделировании отдельных элементов ГВТ и не рассматривают всю систему впуска или выпуска в целом.

В настоящей публикации предложена и используется трехмерная газодинамическая модель ДВС. Отличительной ее особенностью является то, что она изначально разрабатывалась для моделирования и оптимизации всего ГВТ произвольной конфигурации, включая все цилиндры [5, 6, 7]. Данная особенность модели важна при проектировании многоцилиндровых двигателей, в которых процессы в цилиндрах влияют друг на друга через объединенные участки впускной и (или) выпускной систем.

Программная реализация данной модели позволяет в течение 3 - 4 суток по специальной методике сформировать геометрию ГВТ практически любой формы и конфигурации. Мощность расчетной сетки, при этом, может доходить до 3-х млн. ячеек.

Применение трехмерной модели позволило также, с высокой точностью реализовывать диаграммы изменения проходного сечения клапанов в соответственно изменяющейся геометрии расчетной сетки. Это важно при проектировании и доводке механизма газораспределения.

Постановка задачи

В разрабатываемом двигателе, согласно Техническому заданию, требуется обеспечение двух основных режимов: 1) взлетный – 86,1 кВт при частоте вращения коленчатого вала (КВ) n = 5800 мин⁻¹, 2) максимальный продолжительный – 81 кВт при n = 5500 мин⁻¹. Эту мощность двигателя следует считать минимально необходимой. Получение взлетной мощности до 100 кВт положительно скажется на летно-технических характеристиках вертолета. Ограничениями в этом случае являются вес и ресурс двигателя.

На этом вертолете максимальная частота вращения КВ 5800 мин⁻¹ продиктована характеристиками трансмиссии и несущего винта, однако проектируемый двигатель планируется устанавливать и на других летательных аппаратах, где возможно будет его использование и на более высоких частотах вращения, обеспечивающих большую мощность. Основанием для этого является короткий ход поршня, который допускает номинальную частоту вращения КВ большую, чем 5800 мин⁻¹.

По изложенным выше соображениям выбраны три расчетных режима: n = 5500, 5800 и 6500 мин⁻¹.

На этих режимах, с целью получения наибольшей мощности, требуется выбрать наиболее рациональную геометрию ГВТ.

Условия компоновки силовой установки на вертолете (в отличие от самолета) позволяют выполнить трубопроводы выпускной системы более протяженными, что и было использовано.

Результаты расчета

В процессе проектирования силовой установки были рассчитаны характеристики двигателя, оснащенного различными (пробными) вариантами ГВТ. В настоящей публикации рассмотрены два варианта – исходный и улучшенный. Их параметры приведены в табл. 1.

Впускной коллектор с ресивером представлен на рис. 1. Варианты впускного коллектора, кроме размеров, принципиально ничем не отличаются.

На основе анализа известных схем выпускных систем и пробных расчетов было принято решение применить выпускную систему с преобразователем импульсов. Исходный и улучшенный варианты выпускной системы представлены на рис. 2 и рис. 3 соответственно.

Результаты моделирования приведены в табл. 2, а диаграммы процессов газообмена – на рис. 4 – рис. 9.

В табл. 1 и на диаграммах применены следующие обозначения: N_e – эффективная мощность, $G_{s.выбр}$ – количество смеси, выброшенной обратно из цилиндра в конце впуска, $G_{s.забр}$ – количество отработавших газов, заброшенных во впускной коллектор в начале открытия впускного клапана, $G_{r.возвр}$ – количество отработавших газов, вернувшихся обратно в цилиндр перед закрытием выпускного клапана, P – давление в цилиндре, $P_{\rm BII}$ и $P_{\rm BbIII}$ – средние давления в сечениях перед впускным клапаном и за выпускным клапаном, $P_{\Gamma \Pi}$ и $P_{\rm B\phi}$ – средние давления в сечениях перед глушителем и за воздушным фильтром. P_i , $P_{\rm Hx}$ – среднее индикаторное давление и среднее давление насосных ходов.

Из сравнения показателей двигателя с исходным и улучшенным ГВТ следует, что на заданных режимах ($n = 5500 \text{ мин}^{-1}$ и $n = 5800 \text{ мин}^{-1}$) мощность возросла на 13 % и 16 % соответственно. На режиме с $n = 6500 \text{ мин}^{-1}$ – на 12 %. С практической точки зрения – это существенный прирост мощности.

	Варианты ГВТ	
	Исход- ный	Улуч- шенный
Объем впускного ресивера, см ³	874	1092
Диаметр впускного трубо- провода, мм	42,1	40,5
Длина впускного трубопро- вода, мм	180	350
Диаметр подводящих вы- пускных трубопроводов, мм	35,4	36,0
Длина подводящих выпу- скных трубопроводов, мм	480	700
Диаметр объединенного выпускного трубопровода, мм	_	66,7
Длина объединенного вы- пускного трубопровода, мм	_	400
Объем первичной камеры глушителя, см ³	1205	2070
Эквивалентный диаметр выходного поперечного сечения из первичной ка- меры глушителя, мм	44,9	62,2

Таблица 1. Параметры газовоздушного тракта.

Из данных табл. 2 следует, что для обоих вариантов газовоздушного тракта на всех рассматриваемых режимах коэффициент наполнения имеет довольно высокие значения. Это объясняется низким значением параметра «*S/D*», и как следствие – высокими, по отношению к ходу поршня, диаметрами клапанов. Проявляет себя и эффект инерционного наддува.

Рассматривая и сопоставляя диаграммы газообмена, можно отметить, что наибольшее влияние на характеристики двигателя оказывает изменение длин подводящих и объединенного трубопровода выпускной системы. Это отчетливо видно как по моменту возвращения к клапанам волны сжатия, так и по степени разрежения возле клапанов. На взлетном режиме (см. рис. 6 и рис. 7) у улучшенного варианта ГВТ у выпускных клапанов достигается разрежение менее 0,04 МПа на угле поворота коленчатого вала (п.к.в.) равном 520 град., в то время когда у исходного варианта – только 0,06 МПа и на угле 460 град. Далее следует: у исходного варианта – интенсивный скачок давления - до 0,13 МПа - от вернувшейся волны сжатия, а у улучшенного варианта всего лишь - до 0,07 МПа. Все это происходит в период перекрытия фаз газораспределения и сказывается как на очистке камеры сгорания от отработавших газов, так и на дополнительном перепаде давлений (помимо движения поршня), способствующем разгону воздушного заряда во впускной системе.

Рис. 1. Впускной коллектор

Рис.2. Исходный вариант выпускной системы

Рис.3. Улучшенный вариант выпускной системы

<i>n</i> , мин ⁻¹	5500	5800	6500	
Исходный газовоздушный тракт				
<i>N</i> _e , кВт	77,2	81,3	89	
η_v	0,967	0,976	0,98	
γ	0,046	0,049	0,047	
<i>G</i> _{<i>s</i>.выбр} , %	4,33	4,13	2,91	
<i>G</i> _{s.забр} , %	0,11	0,7	0,13	
<i>G</i> _{г.возвр} , %	0,01	0,06	0,08	
<i>g</i> _e , г/кВт*ч	267,2	269,9	275,7	
P_i , МПа	1,209	1,221	1,229	
<i>P</i> _{нх} , МПа	-0,044	-0,051	-0,062	
$(P_i + P_{\text{HX}})$, MIIa	1,165	1,170	1,167	
Улучшенный газовоздушный тракт				
<i>N</i> _e , кВт	87,2	94,3	100	
η_v	1,073	1,12	1,11	
γ	0,031	0,028	0,027	
<i>G</i> _{<i>s</i>.выбр} , %	4,19	3,46	1,22	
<i>G</i> _{s.забр} , %	0,03	0,02	0,01	
<i>G</i> _{г.возвр} , %	0,05	0,06	0,03	
<i>g</i> _e , г/кВт*ч	262,4	265,2	278,3	
P_i , МПа	1,342	1,394	1,390	
<i>P</i> _{нх} , МПа	-0,044	-0,060	-0,101	
$(P_i + P_{\text{HX}})$, MIIa	1,298	1,334	1,289	
Сравнительные изменения параметров				
ΔN_e , %	+13,1	+16,0	+12,4	
$\Delta \eta_v$, %	+11,0	+14,8	+13,3	
$\Lambda(P_i + P_{in}) = \frac{1}{2}$	+114	+14.0	+10.5	

Таблица 2. Результаты моделирования

Подтверждением этого является то, что коэффициент остаточных газов у исходного варианта ГВТ составляет 0,049, а у улучшенного – 0,028 (см. табл. 2).

На диаграмме рис. 7, видно, что за пришедшей к выпускному клапану волной сжатия следует еще 60градусный участок вновь понижающегося давления. Этот участок объясняется наличием у улучшенной выпускной системы объединенного трубопровода. В итоге – первый скачок давления (незначительный) – это момент достижения прямой волны сжатия объединенного трубопровода, а второй скачок давления (значительный и основной) – это момент, когда прямая волна сжатия уже достигла глушителя. Исходный вариант выпускной системы не имеет объединенного трубопровода, и как следствие – интенсивная обратная волна сжатия приходит к клапанам еще до закрытия выпускного клапана и существенно снижает качество газообмена.

По приведенному в табл. 2 параметру $G_{s.3a6p}$, можно также сделать вывод о том, что преждевременно пришедшая к клапанам волна сжатия снижает качество газообмена. При частоте вращения KB $n = 6500 \text{ мин}^{-1}$ заброс отработавших газов во впускной патрубок в момент открытия клапана у исходного варианта составляет 0,13 % от общей массы заряда, а у улучшенного варианта – всего 0,01 %.

На режиме с n = 6500 мин⁻¹ волна разрежения у выпускного клапана реализуется наиболее полно – разрежение возле клапанов в период перекрытия максимально, а пришедшая обратная волна сжатия уже не вызывает ответного скачка давления в цилиндре.

Из диаграмм газообмена видно, что впускная система также настроена – на режиме с n = 5800 мин⁻¹ перед закрытием клапана повышение давления во впускном патрубке достигает 0,14 МПа, а на режиме с n = 6500 мин⁻¹ – почти 0,16 МПа. Это обстоятельство способствует получению коэффициентов наполнения, превышающих единицу.

В табл. 2 приведены сравнительные изменения параметров, из которых следует, что относительное изменение мощности N_e и алгебраической суммы (P_i + $P_{\rm Hx}$) отличаются от относительных изменений коэффициента наполнения η_v . Это объясняется тем, что потери на трение и привод вспомогательных механизмов, которые, оставаясь постоянными для обоих вариантов, изменяют соотношение между полезной работой и потерями. Изменение суммы ($P_i + P_{\rm Hx}$) на частоте вращения КВ n = 5500 мин⁻¹ практически совпадает с изменением коэффициента наполнения. На режимах, с n = 5800 мин⁻¹ и n = 6500 мин⁻¹ прирост ($P_i + P_{\rm Hx}$) отстает от прироста коэффициента наполнения η_v по причине сравнительного роста у улучшенного варианта давления насосных ходов $P_{\rm Hx}$.

Заключение

Применение трехмерной газодинамической модели в формировании рациональной конфигурации газовоздушного тракта поршневого ДВС позволило уже на стадии проектирования существенно повысить его мощность. На требуемых режимах, с n =5500 мин⁻¹ и n = 5800 мин⁻¹, мощность возросла на 13 % и 16 % соответственно. На взлетном режиме с n = 5800 мин⁻¹ – достигнуты коэффициент наполнения и остаточных газов 1,12 и 0,028 соответственно, против 0,976 и 0,049 у исходного варианта газовоздушного тракта. В дальнейших исследованиях планируется проведение многофакторной оптимизации конструктивных параметров систем впуска и выпуска.

Список литературы:

1. Данилов В.В. О выборе оптимальной геометрии газовоздушных трактов четырехтактных дизелей с акустическим наддувом / В.В. Данилов // Двигатели внутреннего сгорания. – 1973. – № 17. – С. 77-88. 2. Гусев А.В. Нестационарное течение газа в разветвлениях газовоздушного тракта / А.В. Гусев, М.Г. Круглов, С.В. Павлов // Двигатели внутреннего сгорания. – 1985. – № 42. – С. 3-9. 3. Дьяченко В.Г. Газообмен в двигателях внутреннего сгорания: Учебное пособие /В.Г. Дьяченко. – К.: УМК ВО, 1989. – 204 с. 4. Солодов В.Г Численная модель течения вблизи впускного клапана ДВС / В.Г. Солодов, Ю.В. Стародубцев, А.А. Хандримайлов // Двигатели внутреннего сгорания. – 2004. - № 2. – С. 81-84. 5. Белоцерковский О.М. Метод крупных частиц в газовой динамике. О.М. Белоцерковский, Ю.М. Давыдов. – М.: Наука. Гл. редакция физ.-мат. литературы, 1982. – 392 с. 6. Воропаев Е.П. Трехмерная газодинамическая модель четырехтактного четырехцилиндрового поршневого ДВС / Е.П. Воропаев // Двигатели внутреннего сгорания. – 2006. - № 2. – С. 54-59. 7. Воропаев Е.П. Моделирование внешней скоростной характеристики двигателя спортбайка SUZUKI GSX-R750 / Е.П. Воропаев // Двигатели внутреннего сгорания. - 2008. - № 1. – С. 47-52.