

Рис. 4. Увеличение g_e при переходе на меньший угол опережения впрыска топлива

При уменьшении Q_{snp} произошло снижение максимального давления газов Pz до 14,8 МПа с одновременным ростом температуры выпускных газов перед турбиной до 620° С.

3. Заключение

1. Разработан комплекс доводочноконструкторских мероприятий, позволяющий дизелям Д-3040 производства ОАО «ПО АМЗ» соответствовать требованиям ГОСТ Р 41.96-2005 по удельным выбросам вредных веществ.

- 2. Установлено, что повышение коэффициента избытка воздуха α позволяет снизить степень ухудшения показателей дизеля, как по топливной экономичности, так и по эмиссии окислов азота NOx, а также по продуктам неполного сгорания CO и твердым частицам.
- Предложен переход к увеличению доли объемного смесеобразования за счет увеличения диаметра камеры сгорания.

Список литературы:

1. Матиевский Д.Д. Показатели эффективности двигателей внутреннего сгорания и их анализ. - Барнаул: Изд-во АлтГТУ, 2006. - 79 с. 2. Кульчицкий А.Р. Токсичность автомобильных и тракторных двигателей. - Владимир: Изд-во Владим. гос. ун-та, 2000. — 256 с. 3. Марков В.А., Баширов Р.М., Габитов И.И., Кислов В.Г. Токсичность отработавших газов дизелей. — Уфа: Изд-во БГАУ, 2000. — 144 с.

УДК 621.43.068.7+662.756.3

И.П. Васильев, канд. техн. наук

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ РАЗРАБОТКИ КОМПЛЕКСНОЙ СИСТЕМЫ НЕЙТРАЛИЗАЦИИ ОТРАБОТАВШИХ ГАЗОВ ДИЗЕЛЕЙ ПРИ РАБОТЕ НА АЛЬТЕРНАТИВНЫХ ТОПЛИВАХ

Введение

Ограниченные запасы на Земном шаре невозобновляемых источников энергии остро ставит проблему поиска альтернативных источников энергии, в частности, возобновляемых и поддерживающих экологическое равновесие. Также произошло стирание граница между традиционными сырьем и продуктами питания. Последние становятся сырьем не только для топливного сектора, но и для химического производства. Так на ЗАО «АЗОТ» (г. Северодонецк) планирует использование в качестве сырья биоэта-

нол для производства органических веществ и синтетических полимеров [1]. И этот процесс стал необратимым. Поэтому возникает задача рационального использования сырьевых ресурсов с обеспечением минимального вредного воздействия на окружающую среду и изменения климата.

Поэтому разработка мероприятий по обеспечению все ужесточающихся норм на вредные выбросы становиться актуальной и важной практической задачей. Для ее решения необходимо опираться на комплексную оценку эффективности использования

не только топлив растительного происхождения, но и систем нейтрализации [2].

Формулирование проблемы

При решении вопроса о выборе систем нейтрализации отработавших газов (ОГ) двигателя при работе на альтернативных топливах необходима комплексная оценка, отнесенная к единице мощности за единицу времени [3]. Она должна учитывать стоимости топлива, экологического ущерба от вредных выбросов (ВВ) с ОГ и выбросов «парниковых» газов. При этом следует учитывать изменения характеристик ВВ, вносимых переходом на альтернативные топлива и воздействием систем нейтрализации, использующих нейтрализирующие добавки, которые также являются вредными веществами. В этом свете возникают задачи оценки влияния на ВВ с ОГ использования альтернативных топлив и параметров систем нейтрализации.

Выбросы вредных веществ с ОГ при сгорании альтернативных топлив

Выбросы ВВ зависят от состава топлив, условий смесеобразования, граничных условий сгорания и т. д. Составляющими топлив различных видов являются С - углерод, Н - водород, О - кислород, S-сера, N - азот, P-фосфор. К вредным выбросам относятся NO_x -оксиды азота; ТЧ- твердые частицы (дымность), СО – оксид углерода, СН - углеводороды, P - соединения фосфора, S-соединения серы. К «парниковым» газам относятся CO_2 , CH_4 , N_2O , HFCs, PFCs, и SF_6 . В настоящее время наблюдается ужесточение норм на BB с $O\Gamma$, которые возможно проследить по данным из таблицы I [4].

В табл. 2 представлено изменение качественного состава альтернативных топлив и ВВ по сравнению с ДТ.

Таблица 1. Нормы на вредные выбросы с ОГ дизелей

Нормы	Год введения			Нормы выбросов, г/(кВт·ч)			
	Европа	Россия	Украина	CO	CH_x	NO_x	ТЧ
EURO-1	1993	1998		4,5	1,1	8	0,36
EURO-2	1995	1999	01.01.2006	4	1,1	7	0,15
EURO-3	1999	2006		2	0,6	4,5	0,1
EURO-4	2005	2008-2010		1,5	0,5	3,5	0,08
EURO-5	2006-2009	После 2010		1	0,5	2	0,05

Таблица 2. Изменение состава вредных выбросов по сравнению с выбросами при работе на ДТ

Альтернативное	Состав топлива	Изменение вредных выбросов по	Парниковые
топливо		сравнению с выбросами дизельного	газы
		топлива	
Дизельное топливо	C, H, S	NO _x , T4, CO, CH, S	CO_2
Водород	H_2	При а<0,6 NO _х ↓,	H_2O_2
		При повышении а $NO_x\uparrow$, $N\downarrow$, $CO\downarrow$	$\mathrm{CO}_2 \!\!\downarrow$
Природный газ	90% CH ₄	$NO_x\downarrow$, $T4\downarrow$, $CO\downarrow$, $CH\downarrow$, $S\downarrow$	CO ₂ , CH ₄
Спирты	CH ₃ OH	$NO_x\downarrow$, $T4\downarrow$, $CO\uparrow$, $CH\uparrow$, $CO_2\uparrow$	нет
	C_2H_5OH		
Биоэтанол	C_2H_5OH	$NO_x\downarrow$, $T4\downarrow$, $CO\uparrow$, $CH\uparrow$, $CO_2\uparrow$	нет
Биодизельное топливо	C, H, O, S, P	$NO_x\uparrow$, $T4\downarrow$, $CO\downarrow$, $CH\downarrow$, $S\downarrow$, $P\uparrow$	нет
Растительные масла	C, H, O, S, P	$NO_x\uparrow$, $T4\downarrow$, $CO\downarrow$, $CH\downarrow$, $S\downarrow$, $P\uparrow$	нет
ЖСТ из угля	C, H, O, S, N	$NO_x\downarrow$, $TY\uparrow$, $CO\downarrow$, $CH\downarrow$, $S\uparrow$	CO_2

Хотя водород является перспективным энергоносителем, но существующие технологии автомобилей на топливных элементах с использованием водорода в качестве топлива далеки от стадии коммерциализации, и в ближайшие 25 лет не следует ожидать существенного сокращения выбросов CO₂ за счет их использования. Здесь необходимо применение возобновляемых источников энергии [5].

Перспективно использование биомассы. Если сейчас используется биомасса первого поколения в виде растительных масел и биодизельного топлива, то второе поколения связано с получением компонентов моторного топлива из биомассы [6]. К 2050 году доля этого вида энергии только на транспорте составит около 30% [7].

При использовании природного газа наблюдается снижение выделения NO_x и ТЧ. Природный газ содержит 90% метана, поэтому в ОГ также содержится этот «парниковый» газ. В случае принятия ограничений по выбросам CH_4 потребуется использование катализаторов окисления CH_4 [8].

При использовании ЖСТ наблюдается увеличение дымности ОГ, и снижение выделения NO_x .

При использовании спиртов снижаются выбросы NO_x примерно на 70% и ТЧ на 40-50% и нет соединений серы. При этом наблюдается рост CH, CO и CO_2 .

При использовании биодизельного топлива и растительных масел как топлив наблюдается примерно на 10% повышение NO_x . При этом можно считать, что выделения CO_2 нет, поскольку этот газ поглощается масличными растения в процессе фотосинтеза на полях. При этом дымность снижается до 40%, но дисперсность частиц уменьшается, что является отрицательным фактором [9, 10].

Системы нейтрализации ОГ

Системы нейтрализации ОГ дизельных двигателей содержат фильтры и каталитические нейтрализаторы. При этом следует учитывать особенности их эксплуатации. Так, когда ограничивают традицион-

ные ВВ, которые обеспечиваются за счет добавки, например, газов восстановителей, то в случае неполадок в системе нейтрализации вредное воздействие может быть выше, чем без системы нейтрализации.

Необходимо учитывать выбросы CO_2 при разных системах нейтрализации. Например, использование сажевых фильтров, сажа из которых удаляется, имеет меньший уровень выделения CO_2 , чем у фильтров, на которых происходит ее выжигание с образование CO_2 и CO.

Решение проблемы

Возможности снижения вредных выбросов с отработавшими газами за счет рабочего процесса ограничены [11]. Совершенствование внутрицилиндровых процессов также не решает полностью поставленные задачи [12].

На основании рассмотренных материалов выявлено, что все ужесточающие нормы на ВВ с ОГ, нельзя выполнить только совершенствованием рабочего процесса двигателя, а необходимо использование альтернативных топлив и совершенствование систем нейтрализации. Поэтому целью данной работы является разработка комплексной системы оценки по снижения ВВ с ОГ. В этом свете необходимо определить фактическое воздействие указанных факторов на выбросы ВВ с ОГ, что требует создание стенда для исследования различных топлив и снабженного универсальной системой нейтрализации как NO_х, так и сажи.

Экспериментальная установка и результаты исследований

Для исследования процесса селективного восстановления оксидов азота, называемого за рубежом – SCR и AdBlue [13] и обеспечивающего EURO-5, параметров регенерации сажи на катализаторах и определения влияния топлив растительного происхождения на показатели дизеля была модернизирована установка на базе вихрекамерного дизеля 2Ч8,5/11, которая приведена на рис. 1.

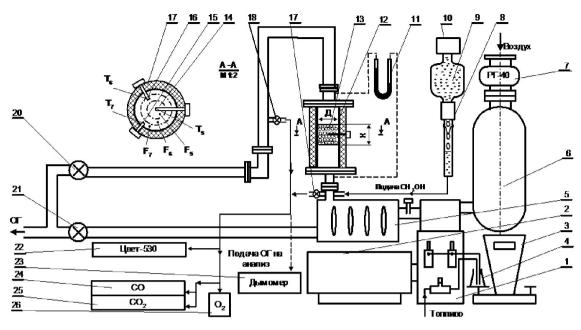


Рис. 1. - Схема установки с дизелем 2 Ч8,5/11

1-дизель; 2-электродвигатель (генератор); 3-весы; 4-мерная колба; 5-нагреватель ОГ; 6-воздушный ресивер; 7-газовый счетчик; 8- расходомер; 9-емкость с аммиакосодержащей жидкостью; 10-компрессор; 11-водяной манометр; 12-реактор; 13-носитель ШН-2; 14, 15, 16-термопары; 17-теплоизоляция; 18, 19-газоотборные краны; 20, 21-перепускные краны; 22-хроматограф "Цвет-530"; 23-дымомер ИДС-1; 24-ГИАМ-15; 25-ГИАМ-14

Наличие нагревателя ОГ позволяет без изменения режима работы двигателя (выделения NO_x) изменять температуру катализатора. На основании исследований с разными катализаторами, при различных объемных скоростях и отношениях NH_3/NO_x было выявлено, что предпочтительный диапазон работы катализатора составляет $250-450^{\circ}$ С и максимальная эффективность восстановления NO_x достигает 90% [14].

Одним из факторов, лимитирующем работу катализаторов является отложение сажи, которая блокирует активные центры каталитических реакций. Выявлено, что в зависимости от сажесодержания в объеме катализатора регенерация может носить как мягкий характер с повышением температуры на 50-100°C, так и жесткий с повышением температуры выше 1350°C, что ведет к выходу из строя нейтрализатора [15].

В результате приведенных исследований был

выявлено, что катализатор восстановления NO_x состава $CuO:Cr_2O_3$ -5:5 обеспечивается начало выгорания сажи с $200\text{-}250^{\circ}C$. К особенностям этого процесса следует отнести необходимость внутренней диагностики нейтрализатора. На данном двигателе были проведены также исследования по влиянию на показатели двигателя биодизельных топлив и смесей растительных масел с ДТ. Выявлено снижение дымности примерно на 40%, и повышения выделения NOx на 10%.

Комплексная оценка систем нейтрализация отработавших газов

Комплексной оценкой эффективности систем нейтрализации являются затраты, отнесенные к единице мощности за единицу времени грн/(кВт ч) и определяются по формуле:

$$C_{\Sigma} = C_1 + C_2 + C_3 + C_4 + C_5$$
,

где C_1 - стоимость топлива, которая определяется как произведение массового расхода топлива на

стоимость 1 кг топлива (грн/(кВт ч)); C_2 - суммарный ущерб от выделения NO_х, твердых частиц, CO, СН, которые определяются с учетом массового выброса и показателей агрессивности (грн/(кВт ч)); С - ущерб от выделения парниковых газов, в частности, СО2, который определяется как массовый выброс за единицу времени на единицу мощности грн/(кВт ч). Стоимость СО2 принимается равной 60 евро/т.; C_4 - ущерб от остаточного восстановителя после нейтрализатора, например, NH₃, показатель относительной агрессивности которого на 30 % выше, чем NO. Определяется с учетом массового выброса NH₃ и показателя агрессивности (грн/(кВт ч)); С5 - ущерб от выделения газов при регенерации сажи, который определяется как массовый выброс СО2 при регенерации на стоимость СО2 (грн/(кВт ч)).

По данному комплексной оценке возможно сравнение комбинаций применения различных способов снижения ВВ при использовании альтернативных топлив.

Заключение

В настоящее время одним из основных критериев выбора двигателей и топлив становятся экологические показатели, которые включают не только вредных выбросов с отработавшими газами, но и «парниковые» газы. Выбор процесса смесеобразования в цилиндре двигателя, подбора альтернативных топлив и параметров систем нейтрализации позволяет обеспечить все ужесточающие нормы не только на вредные выбросы, но и на «парниковые» газы. Данные требования возможно обеспечить принятием на межгосударственном уровне соответствующих нормативных документов, стимулирующих использование альтернативных топлив и применение комплексных систем нейтрализации отработавших газов.

Список литературы:

1. Лищинина Н. А., Кулешов Н. П. Получение этилена из этилового спирта // Матеріали XI Всеукраїнської

науково-практичної конференції «Технологія-2008». -Сєвєродонецьк, 2008. - С. 18. 2. Крайнюк А. И., Васильев И. П. Комплексная оценка эффективности использования топлив растительного происхождения в дизелях // Двигатели внутреннего сгорания. -2007. - № 2. - С. 77-81. 3. Парсаданов І. В. Наукові основи комплексного поліпшення показників паливної економічності та токсичності відпрацьованих газів дизелів вантажних автомобілів і сільскогосподарських машин: Автореф. дис...д-ра техн. наук: 05.05.03 / Національний технічний університет «Харьківский політехнічний інститут» -Харьків, 2003. - 37 с. 4. Гайворонский А. И., Марков В. А., Илатовский Ю. В. Использование природного газа и других альтернативных топлив в дизельных двигателях. – М.: ООО «ИРЦ Газпром», 2007.-480 с. 5. Romm Joseph J. The hype about hydrogen // IEEE Eng/ Manag. Rev. – 2006.-34.-№ 4.-C. 58-65. 6. Mathias Snåre, Iva Kubičková, Päivi Mäki-Arvela, Kari Eränen, and Ditry Yu. Murzin. Heterogeneous Catalytic Deoxygenaton of Stearic Acid for Production of Biodiesel // Ind. Eng. Chem. Res.-2006. - 45.-C. 708-5715. 7. Nitsch von Joachim, Krewitt Wolfrarn. Erneuerbare Energien – Garanten einer zukunftsfähigen Energieversorgung // Sonnenenergie (Germany). – 2004.-№ 5.-S. 44-48. 8. Марков В. А., Баширов Р. М., Габитов И. И. Токсичность отработавших газов дизелей. 2-е изд. перераб. и доп. — M.: Изд-во МГТУ им. Н. Э. Баумана, 2002.-С.336. 9. Звонов В. А., Симонова Е. А., Шеховиов Ю. И. Физикохимические и токсикологические характеристики частиц, выбрасываемых дизельными двигателями в окружающую среду (обзор) // Экотехнологии и ресурсосбережение. - 2005. - №2. - С. 37-47. 10. Васильев И. П. Методика определения дымности и дисперсности сажевых частиц отработавших газов дизеля при работе на биодизеле // Приоритетные направления науки и техники, прорывные и критические технологии: - (ЭЭТПЭ-2007). - Барнаул: ОАО "Алтайский дом печати", 2007. - С. 62-63. 11. Звонов В. А. Токсичность двигателей внутреннего сгорания.-2-е изд., перераб. – М.: Машиностроение, 1981. – 160 с. 12. Васильев И. П., Клюс О. В. Внутрицилиндровый катализ в дизелях. - Калиниград: КГТУ, 2008.- 133 c. 13. Hug H. T., Mayer F., Hartenstein A. Off-Highway Exhaust Gas After-Treatment: Combining Urea-SCR, Oxidation Catalysis and Traps // SAE Pap. Tech Ser.-1993.- № 930363. - р. 14. 14. Звонов В. А., Звонова З. Т., Фесенко П. П., Васильев И. П. Исследование каталитической нейтрализации отработавших газов дизеля // ДВС. - Харьков, 1978. - № 28. - С. 121-127. 15. Звонов В. А., Заиграев Л.С., Васильев И. П., Бодров Ю. К. Результаты исследований электромеханического фильтра для улавливания твердых частиц из отработавших газов дизеля // Экотехнологии и ресурсосбережение. - 1996. - № 4. - С. 59-64