пальных автобусах и мусороуборочных автомобилях. В Италии_введен запрет на строительство АЗС без блока заправки природным газом.

Заключение

 Каждое из исследованных альтернативных топлив позволяют улучшить топливноэкологические показатели дизеля городского автобуса.

 Наиболее высокая топливно-экологическая эффективность в эксплуатации обеспечивается при использовании в качестве топлива для дизеля городского автобуса компримированного природного газа.
В качестве силовой установки для городского автобуса целесообразно применение газового двигателя.

3. Внедрение на городском автотранспорте газовых двигателей, работающих на природном газе, позволяет:

 обеспечить существенный вклад в проблему ресурсосбережения за счет снижения потребления дефицитных нефтяных моторных топлив;

 обеспечить значительный экономический эффект в результате снижения затрат на топливо и на возмещение экологического ущерба.

Список литературы:

1. Парсаданов И. В. Повышение качества и конкурентоспособности дизелей на основе комплексного топливно-экологического критерия: Монография. -Харьков: Издательский центр НТУ «ХПИ», 2003. – 244 с. 2. Парсаданов И.В., Кунах Е.А. Топливноэкологическая оценка дизеля городского автобуса с учетом условий эксплуатации. Двигатели внутрен-него сгорания. – Харьков: НТУ "ХПИ", 2006. – №2. 3. Парсаданов И. В., Кричковская Л. В., Грицаенко И. В. Комплексная оценка экономико-экологических затрат при эксплуатации ДВС на разных территориях // Сборник научных статей XIV Международной научно-практической конференции. Том 1. – 2006. – С. 140 – 143. 4. Канило П.М., Костенко К.В., Сарапина М.В. Эколого-экономический анализ эффективности использования газообразных энергоносителей на автомобильном транспорте // Автомоб. транспорт. – Харьков: ХНАДУ. – 2007. – Вып. 21. – C. 98 - 107.

УДК. 629.113

Г.П. Подзноев, канд. геол.-мин. наук, У.А. Абдулгазис, д-р техн. наук

ТЕРМОДИНАМИЧЕСКИЕ ОСОБЕННОСТИ РЕГЕНЕРАТИВНОГО ЦИКЛА Н-ДИЗЕЛЯ С ИСПОЛЬЗОВАНИЕМ ЭНЕРГОНОСИТЕЛЯ НА ОСНОВЕ ГИДРИДА АЛЮМИНИЯ

Состояние проблемы.

Поиск альтернативных вариантов энергообеспечения транспорта ведется в различных направлениях. Наиболее перспективно использование в качестве энергоносителя водорода, ресурсы которого практически неисчерпаемы. Наиболее продвинутым выглядит вариант с топливными элементами, реализованный в моделях Honda-FCX и DM HyWire [2,3], в которых водород помещается в специальные сверхпрочные баллоны объемом 150 – 160 дм³ под давлением 35 МПа. Масса H₂ при этом составляет всего 4,5–4,9 кг (570 МДж), способных обеспечить лишь 400-450 км пробега. Также проблематична перспектива широко пропагандируемых биотоплив, являющихся теми же углеводородами с присущими им проблемами и требующих существенной реструктуризации агросектора, и так с трудом справляющегося с насущными запросами жизнеобеспечения.

Пути решения проблемы

Одним из перспективных путей решения проблемы может стать использование ряда гидридов металлов. Наиболее интересен в этом отношении гидрид алюминия (AlH₃), в условном объеме которого (150 дм³) содержится 22,2 кг водорода с энергопотенцией около 2665 МДж [1]. Наибольший энерговыход получается при гидролизе AlH₃. При этом из его первоначального объема в 150 дм³ AlH₃ можно получить уже 44,4 кг газообразного H₂ с энергопотенцией 5370 МДж, что выше таковой для 150 дм³ бензина (5060 МДж). Кроме этого при гидролизе выделяется значи- тельное количество тепловой энергии (16,0–18,0 МДж/кг AlH₃, или около 3700 МДж в варианте 150 дм³ AlH₃). Таким образом, полный энергопотенциал AlH₃ может достигать 9000 МДж, что в 1,8 раза выше адекватного по объему бензина или в 15,8 раза выше,

чем в случае сжатого до 35 МПа водорода [4].

В работе [5] рассмотрен КонцептДВС с использованием AlH₃ (H-Дизеля), в который перед адиабатным сжатием введен гидролиз AlH₃, дающим высокую температуру (~3600⁰K) и давление 9,0 МПа. Столь высокие температура и давление уже в начале термодинамического цикла не могут быть приемлемы ни с технологической, ни с технической точек зрения. Сбалансировать в этом случае параметрические характеристики цикла H-Дизеля с максимальным приближением их к реальному циклу Дизеля возможно путем введения на гидролиз добавочной воды. Это позволяет существенно снизить температуру парогазовой фазы до приемлемых 600-800⁰К и повысить ее теплосодержание. В этом случае на стадию адиабатного сжатия поступает оптимально нагретая паро-водородная смесь под приемлемым давлением.

Задачи исследований

В задачу исследований входило определение термодинамических характеристик цикла, которые, как и в обычных циклах ДВС, определяются начальной температурой, степенью сжатия (ε), показателем адиабаты (k) и степенью предварительного расширения в процессе сгорания водорода. Также оценивалась зависимость рассчитанных значений параметров (температуры и давления), термического КПД (η), и совершаемой работы (A) от квоты добавочной воды, степени сжатия, степени регенерации теплоты и энергетического баланса цикла. Последний складывался из теплоты гидролиза (q'_1), парциально приходящейся на парогазовую фазу и теплоты сгорания (q''_1) водорода в камере сгорания двигателя (варианты 1-11 табл. 1 и 2).

Таблица 1. Результаты расчетных исследований. Варианты 1-12

	1	2	3	4	5	6	7	8	9	10	11	12
H_2O_{π}	0,0	1,0	2,0	3,0	4,0	2,0	3,0	4,0	3,0	4,0	5,0	-
q _{гидр.}	1958	1958	1958	1958	1958	1958	1958	1958	1958	19578	1958	-
q_1^1	1104	1785	1861	1892	1908	1861	1892	1908	1892	1908	1919	-
q_1^2	3042	3042	3042	3042	3042	3042	3042	3042	3042	3042	3042	-
q_1	4146	4827	4903	4934	4950	4903	4934	4950	4934	4950	4961	5083
3	5,0	5,0	5,0	5,0	5,0	10,0	10,0	10,0	15,0	15,0	15	17
t ₂	3591	1207	844,1	689,5	604,7	844,1	689,5	604,7	689,5	604,7	549,3	298
t ₃	5723	1859	1328	1099	971,7	1569	1313	1170	1444	1287	1180	850
t ₄	7258	263	1842	1486	1282	2069	1691	1471	1817	1585	1431	2234
t ₅	5536	1878	1276	1008	855,9	1145	910,6	778,6	853,8	730,9	650,8	1086
p ₂	1,205	0,405	0,283	0,23	0,203	0,283	0,23	0,203	0,23	0,203	0,184	0,1
p ₃	9,602	3,12	2,226	1,83	1,631	5,26	4,38	3,918	7,225	6,481	5,929	4,85
p_4	9,602	3,12	2,226	1,83	1,631	5,26	4,38	3,918	7,225	6,481	5,929	4,85
p ₅	2,033	0,631	0,435	0,336	0,287	0,484	0,30	0,26	0,286	0,245	0,218	0,365
η	0.330	0.606	0,624	0,633	0,640	0.742	0.750	0.754	0,816	0,823	0,830	0,580
Α	1368	2925	3059	3123	3168	3638	3700	3732	4026	4074	4117	2948
q_2	2777	1903	1847	1809	1781	1263	1235	1217	909	875,2	845	1983

В таблице 1 и 2 даны:

Н2Од - добавочная вода на гидролиз (г); q гидр. количество генерируемой при гидролизе теплоты (Дж); q₁¹ - теплота гидролиза, вводимая в цилиндр перед адиабатным сжатием; q_1^2 – количество теплоты, введенное за счет сгорании Н₂ в камере сгорания; q₁ - суммарная теплота, введенная в процесс; ε - степень сжатия паро-водородной фазы; t₂ - температура паро-водородной фазы перед адиабатным сжатием $({}^{0}K)$; t₃ - температура после адиабатного сжатия $({}^{0}K)$; t_4 – тем- пература в конце сгорания (⁰K); t_5 – температура паро-газовой фазы в конце адиабатного расширения (⁰К); p₂ - давление перед адиабатным сжатием (МПа); р₃ – давление в конце сжатия (МПа); р₄ давление в конце сгорания (МПа); p₅ - давление паро-газовой фазы в конце адиабатного расширения (МПа); η – термический КПД; А – совершаемая работа; q₂ – выводимая из цикла теплота.

Из таблицы и рис. 1 и 2 видно, что по мере увеличения добавочной воды количество вводимой в цикл теплоты q_1^1 возрастает. При этом снижаются температура и давление. Причем, в начале адиабатного сжатия (жирная линия на рис.1) и процесса сгорания (жирный пунктир) t_2 остается несколько выше, чем для традиционного Дизеля (вариант 12 на рис.1) за счет теплоты гидролиза, стабилизируясь для квоты добавочной воды в пределах 3-5 г на цикл. В конце адиабатного сжатия t_3 выше, а в конце сгорания значительно ниже, чем у Дизеля. При этом видно закономерное увеличение температуры от ε (пунктир 1 для конца адиабатного сжатия и пунктир 2 для конца изобарного горения).

Несколько иная зависимость прослеживается для давления. При $\varepsilon = 5$ оно значительно ниже такового для традиционного цикла, а для $\varepsilon = 15$ - существенно выше. Также четко прослеживается понижение давления по мере увеличения количества добавочной воды и заметно повышается в зависимости от степени сжатия (пунктир 3). Для КПД характерно

ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ 2'2008

устойчивое возрастание, как при увеличении квоты добавочной воды, так и, более четко, - от степени сжатия.

	13	14	16	17	18
H ₂ O	2,0	2,0	3,0	3,0	3,0
q _r	1958	1958	1958	1958	1958
q per	1500	2000	1500	2000	2500
q_1^{-1}	3287	3751	3339	3816	4297
q_1^2	3042	3042	3042	3042	3042
\mathbf{q}_1	6329	6793	6381	6858	7339
3	10	10	10	10	10
t ₂	1440	1672	1034	1207	1380
t ₃	2477	2836	1856	2130	2377
t_4	2623	2985	2010	2291	2543
t ₅	1548	1784	1147	1324	1504
p ₂	0,60	0,70	6,4	6,9	8,5
p ₃	10,4	11,8	11,4	12,2	14,6
p_4	10,4	11,8	11,4	12,2	14,6
p ₅	0,63	0,745	0,71	0,76	0,93
η_t	0.715	0,786	0,732	0,787	0,826
Α	4525	5340	4671	5397	6062
q ₂	1803	1524	1712	1460	1274

Таблица 2. Результаты расчетных исследований. Варианты 13-18

Таким образом, можно определить наиболее комфортные для работы Н-Дизеля диапазоны изменения основных исходных показателей. Это - квота добавочной воды в количестве 3-4 г на цикл и степень сжатия 10-15. Для оптимизированных исходных показателей проведена серия расчетов по характеру влияния степени регенерации теплоты на основные параметры и конечные показатели цикла (табл. 2), отраженные на рис. 3 и 4. Из графиков видно, что регенерация теплоты особенно заметно влияет на снижение количества выводимой из цикла теплоты. Это приводит к существенному увеличению термического КПД цикла (варианты 13-18). При этом также возрастают значения температуры и, особенно, давления (рис. 3, вариант 12). Их оптимизация возможна за счет снижения квоты подаваемого в процесс AlH3 до уровня обеспечения количества совершаемой работы за цикл, аналогичной традиционному Дизелю.

Графическое отражение соотношений между основными характеристиками цикла Н-Дизеля (рис.4), показывают четко выраженное возрастание термического КПД и количества работы от увеличения степени сжатия, количества подаваемой на гидролиз добавочной воды и степени регенерации теплоты. При этом значения КПД в объеме и диапазоне проведенных расчетов могут достигать значений 0,8-0,83, что в идеале близко к термическому КПД регенеративного цикла Карно. Подобное допущение определяется особенностью цикла Н-Дизеля, связанной с резким доминированием паров воды в рабочем теле и возможностью ее конденсации в жидкую фазу. Последняя в теплообменнике поглощает часть выводимой теплоты и затем вновь направляется на гидролиз, циркулируя по замкнутой схеме и обеспечивая, тем самым, регенерацию теплоты. Отходящими продуктами при этом, что весьма важно, будут остаточная паровая фаза и азот – экологически безвредные вещества.

Рис. 4. Зависимость термического КПД *п* и количества работы А цикла от степени сжатия є, количества добавочной воды и степени регенерации теплоты q_{per} в цикле Н-Дизеля

Выводы и рекомендации

Следующий этапом исследований должно стать определение наиболее оптимальных соотношений основных термодинамических характеристик и параметров в рамках идеального цикла Н-Дизеля. На основании определения наиболее оптимальных вариантов работы цикла, можно начать исследования и расчеты основных конструкционных узлов и поиск компоновочной схемы Н-Дизеля.

Параллельно описанной выше схеме развития работ необходимы дополнительные исследования возможности расширения перечня перспективных металлогидридов, особенно на основе композиции гидридов Al, Na и Si, а также технологических схем их производства. Решение этой проблемы позволит получить наряду с регенерируемым после гтдролиза Al2O3, практически неограниченную сырьевую базу для многотоннажного производства металлогидридных энергоносителей, поскольку исходным сырьем для получения подобных комплексных металогидридов будут весьма широко распространенные магматические породы щелочного ряда.

Список литературы:

1. Гамбург Д.Ю., Семенов В.П., Дубовкин Н.Ф., Смирнова Л.Н. Водород. Свойства, получение, хранение, транспортирование, применение. // Справочник. Москва. Изд-во Химия.- 1989. - 672 с. 2. Фомин А. Водородный фундамент. // Ж. За рулем. 2004. № 1.-С. 64 – 67. 3. Орлов Д. Теплота спасет мир. // Вокруг Света. - 2003. № 2. - С. 67 –73. 4. Подзноев Г.П. Абдулгазис V.А. Металлогидридные системы энергообеспечения транспорта.. // Двигатели внутреннего сгорания.- Харьков: НТУ ХПИ.- 2004 г.- С. 32-36. 5. Подзноев Г. П., Абдулгазис У.А. Возможности повышения эффективности термодинамического цикла Дизеля путем использования альтернативного энергоносителя. // Двигатели внутреннего сгорания. Харьков: НТУ «ХПИ».- 2007. № 1. -С. 87-91.