Е.В. Белоусов, канд. техн. наук, Т.П. Белоусова, инж.

МОДЕЛИРОВАНИЕ ТЕРМОДИНАМИЧЕСКИХ ЦИКЛОВ ПРИ СЛОЕВОМ СЖИГАНИИ ТВЕРДЫХ ТОПЛИВ В ПОРШНЕВОМ ДВИГАТЕЛЕ

1. Актуальность проблемы

Устойчивая тенденция к росту цен на нефть, а также прогнозы об исчерпании ее ресурсов в обозримом будущем делают проблему поиска альтернативных путей расширения топливной базы ДВС актуальной уже в настоящее время. Одним из возможных путей решения проблемы является разработка новых методов прямого сжигания твердых топлив, которые бы позволяли реализовать в поршневых двигателях наиболее эффективные термодинамические циклы. К их числу можно отнести слоевое сжигание твердых топлив с принудительной управляемой продувкой слоя. Основной особенностью твердотопливных поршневых двигателей (ТТПД) со слоевым сжиганием является то, что режим подвода теплоты в них напрямую связан с режимом продувки слоя. Последний, в свою очередь, задается законом перемещения вытеснителя. Таким образом, можно предположить, что в двигателях данного типа могут быть реализованы различные термодинамические циклы как характерные для существующих типов ДВС, так и специальные.

2. Анализ литературных источников

Современная теория ДВС выделяет три основных типа рабочих циклов: цикл Дизеля, Отто и Тринклера-Саботе, из которых лишь последние два нашли практическое применение [1]. Термодинамический анализ показывает, что существующие двигатели практически подошли к предельному теоретически возможному КПД рабочего процесса, что делает их дальнейшее совершенствование малоэффективным и связано со значительным усложнением конструкции [2, 3]. В то же время основные положения классической термодинамики позволяют считать, что используемые в настоящее время циклы достаточно далеки от идеальных [4]. В существующих циклах практически не используются изотермические или близкие к ним процессы, лежащие в основе наиболее эффективного теоретического цикла Карно.

В значительной степени данная ситуация связана с невозможностью эффективно управлять процессом сжатия и подвода теплоты в существующих типах двигателей. В то же время особенности конструкции и рабочего процесса ТТПД позволяют эффективно воздействовать на характер протекания термодинамического цикла путем охлаждения воздушного заряда в процессе сжатия [5] и управления продувкой слоя твердого топлива [6].

3. Решение проблемы

Принципиальной особенностью рабочего процесса ТТПД является то, что топливо сжигается не в рабочем цилиндре, а в специальном выносном устройстве – реакторе. В свою очередь, реактор состоит из топочной и вытеснительной камер, которые разделены вытеснительным поршнем, выполняющим одновременно функции золотникового распределителя.

Топочная и вытеснительная камеры соединяются между собой каналом, а с рабочим цилиндром каналами, которые попеременно перекрываются вытеснителем. Твердое топливо, заполняющее топочную камеру, все время находится в активированном состоянии, то есть имеет температуру, достаточную для протекания окислительных реакций с кислородом воздуха. При сжатии воздушный заряд поступает по каналу в вытеснительную камеру. При приближении поршня к ВМТ вытеснитель начинает подниматься, перекрывая один канал и открывая другой канал. Воздух из вытеснительной камеры поступает под слой топлива. Проходя через слой, кислород вступает в реакции с образованием горячих продуктов сгорания, которые возвращаются в рабочий цилиндр и совершают работу расширения. Процессы газообмена в ТТПД аналогичны процессам в классических ДВС.

В организации рабочего процесса в ТТПД можно выделить две особенности, которые принципиально отличают его работу от работы классических ДВС и могут лечь в основу совершенствования термодинамического цикла данного двигателя:

 активация процесса горения топлива осуществляется не за счет теплоты заряда, как в дизелях, и не от постороннего плазменного источника, как в бензиновых или газовых двигателях, а за счет теплоты, аккумулированной слоем твердого топлива;

 характер выделения теплоты в реакторе зависит от режима продувки, задаваемого законом перемещения вытеснительного поршня.

Первая особенность указывает на то, что температура заряда к концу сжатия не имеет существенного значения и может быть снижена путем его охлаждения в процессе сжатия, например, распыливанием воды в объеме рабочего цилиндра. Это позволит снизить затраты работы на сжатие и приблизить процесс к изотермическому. Подробно особенности такого способа охлаждения рассмотрены в работе 5.

Вторая особенность позволяет, изменяя закон движения вытеснителя, осуществлять подвод теплоты по характеристикам, близким к изохоре, изобаре, изотерме или их комбинациям. Для анализа влияния приведенных выше факторов на характер протекания термодинамического цикла ТТПД была разработана математическая модель рабочего процесса. Она включает в себя подмодели процессов: газообмена, сжатия (в том числе и охлаждаемого) [5], подвода теплоты, расширения, слоя [7] и подмодель теплообмена рабочего газа со стенками цилиндра. Модель составлена с использованием классических уравнений термодинамики и теории ДВС. Отдельные подмодели более подробно описаны в работах [5, 6, 7].

В качестве объекта моделирования был выбран ТТПД на базе малоразмерного высокооборотного четырехтактного дизеля 4Ч 10,5/11 (Д-144), у которого геометрическая степень сжатия в расчетах была увеличена до 18, а частота вращения принята равной 1500 мин⁻¹.

Было смоделировано шесть различных процессов: три классических с подводом теплоты при p=const, V=const и V=const+p=const, а также три специальных с подводом теплоты при T=const, V=const+T=const, p=const+T=const. Все циклы моделировалось без охлаждения заряда и с охлаждением заряда в процессе сжатия путем распыливания воды. Эффективность влияния охлаждения заряда на рабочий процесс была обоснована ранее в работе [5]. Основные расчетные характеристики для рассмотренных процессов приведены в табл. 1. Расчетные графические зависимости изменения давления и температуры в рабочем цилиндре, закон перемещения вытеснителя, а также характеристики выделения теплоты, коэффициент и скорость тепловыделения (теплонапряженность) представлены на рис. 2, 3. На рис. 2 показаны расчетные зависимости для трех циклов, в которых моделировался изотермический подвод теплоты как самостоятельно, так и в сочетании с изохорным и изобарным. На рис. 3 те же зависимости представлены для рабочих процессов с охлаждением

заряда в ходе сжатия.

Рис. 2. Расчетные зависимости изменения давления и температуры, а также закон перемещения вытеснителя, коэффициент и скорость тепловыделения при отсутствии охлаждения заряда на сжатии для циклов с изотермическим подводом теплоты

Следует отметить, что наибольшая эффективность рабочего процесса достигается, когда заряд охлаждается не в течение всего сжатия [8], а в продолжение некоторого участка, за которым следует неохлаждаемое сжатие парогазовой смеси. Для рассматриваемого случая наибольшая эффективность рабочего процесса достигается при распыливании в цилиндре 77 мм³ воды. Моменту окончания испарения воды соответствует характерный прогиб на линии сжатия (на рис. 3 показан стрелкой).

Выбор закона перемещения вытеснителя осуществлялся путем машинной итерации отдельных точек кривой с шагом 1° по углу поворота коленчатого вала относительно того выходного параметра, по которому осуществлялась оптимизация тепловыде-

Рис. 3. Расчетные зависимости изменения давления и температуры, а также закон перемещения вытеснителя, коэффициент и скорость тепловыделения при охлаждении заряда на сжатии для циклов с изотермическим подводом теплоты

ления. При моделировании в качестве изохорного принимался участок цикла, лежащий в интервале -5°...ВМТ...5°. За этот угловой промежуток объем камеры сгорания изменялся не более, чем на 5%.

Результаты моделирования показали, что при использовании изотермического подвода теплоты существенного повышения эффективности рабочего процесса не происходит. Это объясняется тем, что сравнительно высокая температура сохраняется в цилиндре на протяжении длительного участка цикла, в течение которого существенно увеличивается площадь теплообмена со стенками цилиндра. Это приводит к значительным тепловым потерям. В то же время, при использовании изотермического подвода теплоты отмечается существенное снижение максимальных температуры и давления цикла. По сравнению с изохорным подводом, снижение составляет 37 и 30% соответственно для рабочего процесса без охлаждения заряда, а для цикла с охлаждением – 42,3 и 32%. При этом снижение мощности составляет для обоих случаев примерно 26,5%. Из этого следует, что при одинаковом способе подвода теплоты изменение основных параметров цикла происходит пропорционально величине охлаждения заряда при сжатии.

Наиболее эффективным из всех рассмотренных является цикл с последовательным изохорным и изо-

термическим подводом теплоты, однако повышение эффективности, по сравнению с традиционным циклом с изохорным и изобарным подводом, незначительно и составляет 1,4% для случая с неохлаждаемым сжатием и 4,4% для случая с охлаждаемым сжатием. При этом снижение мощности для первого случая составляет 6,6%, а для второго 5,2%. Более высокая эффективность и незначительное снижение мощности для цикла с охлаждением объясняется более рациональным распределением тепловыделения относительно ВМТ.

	Способ подвода теплоты											
	изохора		изобара		изотерма		Изохора + изобара		Изохора + изотерма		Изобара + изотерма	
	Без охл.	С охл.	Без охл.	С охл.	Без охл.	С охл.	Без охл.	С охл.	Без охл.	С охл.	Без охл.	С охл.
Максимальная скорость вытеснителя, м/с	27,62	27,62	37,92	31,45	15,80	11,80	27,62	27,62	55,35	55,35	15,04	11,66
Масса топлива, сгоревшего за цикл, г	0,033	0,036	0,033	0,035	0,027	0,027	0,033	0,036	0,030	0,033	0,028	0,0295
Работа, совершаемая за цикл, кДж	0,581	0,686	0,555	0,653	0,428	0,502	0,579	0,687	0,541	0,651	0,468	0,560
Индикаторный КПД рабочего процесса	0,499	0,541	0,479	0,529	0,459	0,527	0,502	0,544	0,509	0,569	0,476	0,543
Инд. часовой расход твердого топлива, кг	1,50	1,63	1,49	1,59	1,20	1,23	1,49	1,63	1,37	1,47	1,27	1,33
Часовой расход усло- вного топлива, кг *	1,23	1,34	1,22	1,30	0,99	1,01	1,22	1,34	1,12	1,21	1,0415	1,0920
Инд. удельный расход теплоты кДж/(кВт×ч)	7214	6654	7509	6807	7840	6831	7167	6612	7073	6322	7568	6627
Удельный расход усл. топлива, кг/(кВт×ч)*	0,170	0,157	0,177	0,160	0,184	0,161	0,169	0,156	0,166	0,149	0,178	0,156
Среднее индикаторное давление, МПа	0,61	0,72	0,58	0,67	0,45	0,53	0,61	0,72	0,57	0,68	0,491	0,59
Индикаторная мощность кВт	7,26	8,57	6,94	8,16	5,35	6,28	7,24	8,59	6,76	8,14	5,85	7,00
Максимальная температура цикла, °С,	2274	1991	2044	1782	1445	1145	2207	1961	1824	1559	1545	1280
Температура в конце расширения, °С	633,5	544, 2	635,1	546,7	556,1	478,5	634,3	546,7	620,1	544, 9	583,9	511,6
Максимальное давле- ние цикла, МПа,	11,05	10,73	7,74	7,40	7,74	7,26	10,06	10,14	9,37	9,25	7,74	7,26
Давление в конце расширения, МПа	0,223	0,227	0,223	0,228	0,205	0,211	0,223	0,228	0,220	0,228	0,212	0,220

Таблица 1.	Основные	расчетные	характеристики	процессов в	з ТТПД
		r	r	p	·

* Ни=42,7МДж/кг

Из таблицы 1 и рис. 2 и 3 видно, что для рассматриваемых условий охлаждение заряда на линии сжатия позволяет более существенно воздействовать на эффективность рабочего процесса, чем использование изотермического подвода теплоты. Следует отметить, что охлаждение заряда по-разному влияет на эффективность рабочих процессов с различными способами подвода теплоты. Здесь наблюдается устойчивая тенденция более значительного повышения индикаторного КПД в циклах с изотермическим подводом теплоты. Так, для традиционного способа подвода теплоты при V=const+p=const применение охлаждаемого сжатия приводит к повышению индикаторного КПД на 7,7%, в то время как для цикла с изотермическим подводом повышение составляет 12,9%. Для циклов с подводом теплоты при V=const+T=const и p=const+T=const повышение составляет 10,5 и 12,34% соответственно. Отмечается также устойчивая тенденция к снижению максимальных температуры и давления цикла. При этом снижение температуры для всех циклов сильно не отличается и составляет 246...295,9°С. Это подтверждает высказанное ранее предположение о том, что температура в охлаждаемом цикле снижается пропорционально степени охлаждения заряда и мало зависит от способа подвода теплоты [9]. Снижение максимального давления наиболее значительно для циклов, у которых подвод теплоты не сопровождается ростом давления. Для цикла с изотермическим процессом снижение составляет 0,48МПа, в то же время для цикла с подводом теплоты по V=const+p=const снижение не превышает 0,08МПа. Таким образом, можно предположить, что подвод теплоты по изотерме в реальном цикле теплового двигателя не дает тех термодинамических преимуществ, которые характерны для идеального цикла, главным образом за счет возрастания потерь теплоты в стенки рабочего цилиндра. Эти выводы подтверждаются и результатами экспериментальных исследований, выполненных еще в начале прошлого века [9]. Очевидно, что наиболее оптимальный закон подвода теплоты в цикле ТТПД должен протекать, не подчиняясь какому-либо определенному порядку чередования изопроцессов, а происходить политропно. Оптимальность подвода теплоты зависит от моментов начала и окончания подъема вытеснителя, закона его движения, продолжительности продувки. Исследование влияния этих параметров на рабочий процесс ТТПД требует отдельного, более детального исследования.

Выводы

Результаты моделирования различных способов подвода теплоты в ходе осуществления термодинамического цикла ТТПД показали:

 – при изотермическом подводе теплоты сравнительно высокая температура, которая сохраняется в цилиндре на протяжении длительного участка цикла, в течение которого значительно увеличивается площадь теплообмена со стенками, не позволяет получить существенного повышения эффективности рабочего процесса;

– использование изотермического подвода теплоты сопровождается снижением максимальных температуры и давления цикла. По сравнению с изохорным подводом снижение составляет 37 и 30% соответственно для рабочего процесса без охлаждения заряда, а для цикла с охлаждением – 42,3 и 32%, при этом снижение мощности составляет для первого и второго случая примерно 26,5%;

из всех рассмотренных наиболее эффектив ным является цикл с последовательным изохорным и

изотермическим подводом теплоты. Однако повышение эффективности, по сравнению с традиционным циклом Тринклера-Саботе, незначительно и составляет 1,4% для случая с неохлаждаемым сжатием и 4,4% для случая с охлаждаемым сжатием. При этом снижение мощности для первого случая составляет 6,6%, а для второго 5,2%. Более высокая эффективность и меньшее снижение мощности для цикла с охлаждением объясняется более рациональным распределением тепловыделения относительно ВМТ;

– охлаждение заряда на линии сжатия позволяет более существенно воздействовать на эффективность рабочего процесса, чем использование изотермического подвода теплоты. Очевидно, что наиболее оптимальный закон подвода теплоты в цикле ТТПД должен протекать, не подчиняясь какому-либо определенному порядку чередования изопроцессов, а политропно;

 использование охлаждения заряда для циклов
изотермическим подводом теплоты позволяет повысить их эффективность на 10...12%, в то время как
для традиционных циклов это повышение составляет
7...9%.

Список литературы:

1. Двигатели внутреннего сгорания. Теория поршневых и комбинированных двигателей / Вырубов Д.Н., Иващенко Н.А., Ивин В.И. и др. / под ред. проф. Орлин А.С., Круглова М.Г. – М.: «Машиностроение», 1983. – 480 с. 2. Чайнов Н.Д. Проблемы и перспективы поршневого двигателестроения в России. // «Двигателестроение» 2001. №4 – С. 46-47. 3. Гордеев П.А., Яковлев Г.В. Судовое дизелестроение в конце прошлого века, прогнозы на будущее. // «Двигателестроение» – 2002, №1. – С. 12-14. 4. Кирилин В.А., Сычев В.В., Шейндлин А.Е. Техническая термодинамика. – М.: «Энергия», 1968. – С. 85-94. 5. Белоусов Е.В. Моделирование процесса сжатия с охлаждением воздушного заряда путем распыливания воды в рабочем цилиндре ДВС. // Двигатели внутреннего сгорания. Всеукраинский научнотехнический журнал. – Харьков: изд. НТУ(ХПИ) – 2006. – № 1. – С. 72-78. 6. Белоусов Е.В. Создание и совершенствование твердотопливных поршневых двигателей внутреннего сгорания. – Херсон: OAO ХГТ, 2006.– 451с. 7. Белоусов Е.В., Белоусова Т.П. Моделирование процесса формирования слоя твердого топлива в реакторе твердотопливного поршневого двигателя со слоевым сжиганием. // Двигатели внутреннего сгорания. Всеукраинский научнотехнический журнал. – Харьков: изд. НТУ(ХПИ) – 2006. – № 2. – С. 126-130. 8. Белоусов Е.В. Охлаждение заряда путем распыливания воды и его влияние на рабочий процесс твердотопливного поршневого двигателя // Вісті Автомобільно-дорожнього інстітуту: Науково-виробничій збірник / АДІ ДонНТУ – Горлівка. 2006. – №2 (3). – С. 22-28. 9. Гюльднер Г. Двигатели внутреннего сгорания, их работа, конструкция и проектирование: в 2-х T – T.2. – М.: «МА-КИЗ», 1928. – С. 803.