повышать ее жесткость, уменьшать длину или создавать бесштанговые конструкции форсунок.

Список литературы:

1. Презентация фирмы «Robert Bosch GmbH» //Актуальные вопросы создания топливоподающих систем транспортных дизелей: Материалы научно-технической конференции, посвященной 30-летию ЯЗДА. —Ярославль, 2002.-ил. 2. Патент Российской Федерации на изобретение № 2221930 «Форсунка электрогидравлическая для двигателя внутреннего сгорания с аккумуляторной топливной системой». Авторы: Добриян Б.Л., Драган Ю.Е., Рахметуллаев М.Н. и др. Приоритет изобретения 04.03.2002. 3. Современные подходы к созданию дизелей для легковых автомобилей и малотоннажных грузовиков / Блинов А.Д., Голубев П.А., Драган Ю.Е. и др. Подред. Папонова В.С. и Минеева А.М. — М., НИЦ «Ин-

женер», 2000. 332 с.: с ил. 4. Астахов И.В., Трусов В.И., Хачиян А.С., Голубков Л.Н. Подача и распыливание топлива в дизелях .- М. : Машиностроение, 1971.-359 с. 5. Драган Ю.Е. Экспериментальные исследования электрогидравлических форсунок аккумуляторных топливных систем высокооборотных автомобильных двигателей//Материалы международной научно-практической конференции 11.10.2002) «Прогресс транспортных средств и систем-2002», часть 2. – Волгоград, 2002. – 340 с., с ил. 6. Грехов Л.В., Иващенко Н.А., Марков В.А. Топливная аппаратура и системы управления дизелей: Учебник для вузов. -М.: Легион-Автодата, 2004.-344 с., ил. 7. Марченко А.П., Прохоренко А.А., Мешков Д.В. Математическое моделирование процессов в электрогидравлической форсунке системы СК в среде MATLAB / SIMULINK // Двигатели внутреннего сгорания. -№ 1. – 2006. – Харьков, - С. 98-101.

УДК 621.43

В.А. Романов, канд. техн. наук, Ю.Л. Попов, канд. ист. наук

ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ НАДДУВА ЗА СЧЕТ СТАБИЛИЗАЦИИ ТЕМПЕРАТУРЫ ВОЗДУХА, ПОСТУПАЮЩЕГО В ЦИЛИНДРЫ ДИЗЕЛЯ, РАБОТАЮШЕГО НА ПЕРЕМЕННЫХ РЕЖИМАХ

Введение

Известно, что наддув является одним из наиболее действенных способов улучшения удельных мощностных и массогабаритных показателей двигателей.

Однако чем больше давление после нагнетателя, тем выше температура воздуха, поступающего в цилиндры двигателя, что, особенно при повышенном и высоком наддуве, существенно снижает его эф-

фект. Поэтому многие двигатели с наддувом оборудуются охладителями наддувочного воздуха (ОНВ) различной конструкции. В большинстве случаев (за исключением охладителей испарительного типа) эти конструкции представляют собой радиаторы типа «воздух-воздух» или «воздух-вода».

Заметим, что давление, а, следовательно, и температура наддувочного воздуха (НВ) существенно изменяются в зависимости от частоты вращения коленчатого вала поршневого ДВС. Проведенная нами обработка материалов испытаний различных двигателей позволяет утверждать, что при переходе от холостых оборотов к частоте вращения коленчатого вала, соответствующей номинальной мощности. Температура воздуха после турбины увеличивается в 1,5-2,2 раза [1, 2].

1. Формулирование проблемы

Отмеченные выше особенности комбинированных двигателей приводят к тому, что использование ОНВ при работе на режимах малых нагрузок и холостого хода слишком сильно понижает его температуру, и создаются условия для неблагоприятного протекания рабочего процесса в цилиндре поршневого двигателя. В частности, возникают проблемы осмоления деталей, лакообразование, а в случаях использования топлив на основе газоконденсатов - даже пропуски отдельных циклов. Решение этой проблемы в настоящее время в доступной нам литературе отсутствует.

1.1. Общие принципы решения проблемы

В технике хорошо известны устройства, содержащие теплоаккумулирующие вещества (желательно фазового перехода), которые позволяют демпфировать, сглаживать колебания температуры проходящих через них газов [3, 4]. Поэтому решение проблемы поддержания температуры НВ в оптимальных пределах для обеспечения эффективного протекания рабочего процесса и повышения надежности комбинированных ДВС при работе на любых эксплуатационных режимах представляется принципиально возможным за счет использования аккумулятора внутренней энергии (который в рассматриваемом аспекте логично называть «стабилизатором температуры наддувочного воздуха»), установленного во впускном тракте комбинированного ДВС после компресcopa.

2. Решение проблемы

2.1 Схема системы стабилизации температуры наддувочного воздуха

На рис. 1 приведен вариант схемы организации газотурбинного наддува со стабилизатором температуры наддувочного воздуха (СТНВ), который позволяет практически исключить колебания температуры НВ перед поступлением его в цилиндры комбинированного двигателя при работе на неустановившихся режимах.

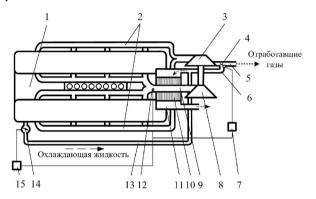


Рис. 1. Принципиальная схема системы стабилизации температуры наддувочного воздуха:

1-дизель; 2-выпускные коллекторы; 3-газовая турбина; 4-регулирующая заслонка; 5-выхлопная труба; 6-патрубок подвода отработавших газов к СТНВ; 7,15 - управляющее устройство; 8-компрессор; 9-впускной коллектор; 10-теплоаккумулирующее вещество; 11-полость для прохода отработавших газов или охлаждающей жидкости; 12-температурный датчик; 13-патрубок подвода охлаждающей жидкости к СТНВ; 14-клапан

Комбинированный двигатель функционирует следующим образом. Когда дизель работает на больших нагрузка, температура НВ после компрессора достигает 100 °С и более. Проходя через устройство, объединяющее емкость с теплоаккумулирующим веществом (ТАВ) 10 и полость для прохода отработавших газов (ОГ) 11, воздух нагревает ТАВ, охлаждается и по впускному коллектору направляется в цилиндры дизеля. При этом управляющее устройство 7, связанное с температурным датчиком 12,

установленным на выходе НВ из СТНВ, обеспечивает такое положение регулирующей заслонки 4, которое исключает попадание ОГ в полость для прохода отработавших газов 11. Если нагрузка уменьшается, то соответственно снижаются обороты рабочего колеса компрессора и температура НВ понижается. Если она станет ниже температуры разогретого ранее ТАВ, то от последнего начнется подвод теплоты к НВ, проходящему через СТНВ, и во впускной коллектор будет поступать подогретый воздух.

2.2. Определение целесообразного уровня охлаждения наддувочного воздуха

Чтобы определить целесообразное значение температуры НВ, которое обеспечивало бы «компромисс» между мощностными, экономическими показателями дизеля ЯМЗ-8424, механической и тепловой нагруженностью его узлов и деталей, автором были проведены экспериментальные исследования.

Прежде всего, было оценено влияние температуры НВ на мощностные, экономические показатели и характер протекания рабочего цикла. Штатный ОНВ был отсоединен от жидкостной системы охлаждения двигателя и подключен к отдельному водяному контуру. Это позволило, регулируя в нем расход циркулирующей холодной воды, изменять температуру воздуха на выходе из ОНВ.

Определение указанных показателей провели при работе дизеля с частотами вращения коленчатого вала, соответствующими режиму номинальной мощности и режиму максимального крутящего момента. На рис. 2 в качестве примера показано изменение показателей дизеля ЯМЗ-8424 в зависимости от температуры наддувочного воздуха на режиме номинальной мощности.

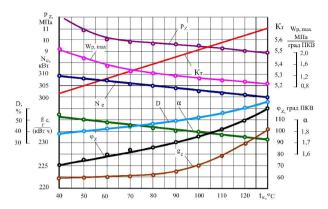


Рис. 2. Изменение показателей дизеля ЯМЗ-8424 в зависимости от температуры наддувочного воздуха при n=2100 мин⁻¹

Для определения целесообразного уровня охлаждения НВ была разработана специальная методика [5].

Для каждого показателя проводили расчет степени его положительного изменения ($C_{\text{пи}}^i$) в процентах от наихудшего значения:

$$C_{nu}^{i} = \frac{\left| A_{j}^{i} - A_{0}^{i} \right|}{A_{0}^{i}} 100\%,$$

где A_j^i - текущее значение і-го показателя; A_0^i - наихудшее значение і-го показателя.

В качестве показателей были приняты: литровая эффективная мощность двигателя $(N_{e\pi})$, удельный эффективный расход топлива (g_e) , показатель механической нагруженности - $\Pi_{\rm M}$ (представляющий собой среднее арифметическое значение суммы максимального давления (p_z) и максимальной «жесткости» $(W_{p \text{ max}})$), показатель тепловой нагруженности (критерий тепловой напряженности $K_{\rm T}$) и дымность ОГ.

Затем с помощью квалиметрического метода определяли значимость (коэффициент весомости «m_i») каждого из перечисленных показателей по следующей методике. коэффициентов весомости для каждого i-го параметра находили индивидуальный

коэффициент его положительного изменения (K_{nu}) по формуле:

$$K_{nu}^{i} = C_{nu}^{i} m_{i}$$
.

Затем сложением коэффициентов положительного изменения всех показателей при данной температуре наддувочного воздуха получали интегральное значение коэффициента положительного изменения показателей для f-ой температуры:

$$\sum K_{nun}^{f} = \sum K_{nu}^{i_{f}} = K_{nu}^{\text{Nee}_{f}} + K_{nu}^{g_{e_{f}}} + K_{nu}^{K_{\text{M}_{f}}} + K_{nu}^{K_{m_{f}}} + K_{nu}^{D_{f}}.$$

Экстремум кривой, построенной в координатах «интегральный коэффициент положительного изменения показателей для f-ой температуры - температура наддувочного воздуха», соответствовал целесообразному значению температуры НВ с точки зрения «компромисса» между мощностными, экономическими показателями, механической, тепловой нагруженностью и дымностью отработавших газов.

На основании проведенных расчетов были построены зависимости интегральных коэффициентов положительного изменения показателей от температуры НВ.

Рис. 3 иллюстрирует зависимость интегрального коэффициента положительного изменения показателей дизеля ЯМЗ-8424 от температуры НВ при $n=2100~\mathrm{Muh}^{-1}$

Видно, что начиная с 40 0 C величина интегрального коэффициента практически линейно увеличивается до температуры 70 0 C, после чего значение $\sum K_{nun}^{f}$ практически линейно падает до предельно высокой температуры 130 0 C.

В области между 67 и 80 0 С изменение $\sum K_{nun}^{f}$ незначительно (0,45 %), поэтому указанный интервал можно считать целесообразным при выборе температуры наддувочного воздуха с точки зрения «компромисса» между мощностными, экономическими показателями, механической, тепловой нагру-

женностью и дымностью отработавших газов для режима n=2100 мин⁻¹.

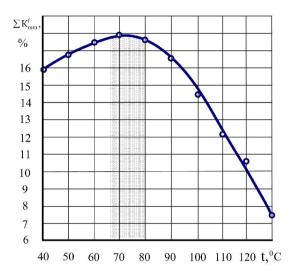


Рис. 3. Зависимость интегрального коэффициента положительного изменения показателей дизеля ЯМЗ-8424 от температуры наддувочного воздуха при n=2100 мин⁻¹

Аналогичный рис. 3 график был построен и для зависимости интегрального коэффициента положительного изменения показателей дизеля ЯМЗ-8424 от температуры наддувочного воздуха при n=1300 мин⁻¹ (т. е. на режиме, соответствующем максимальному кругящему моменту).

Оказалось, что характер кривой стал более плавным, хотя максимальное значение $\sum K_{\text{пип}}^{f}$ как и в прошлом случае достигается при температуре НВ 70 0 С. При этом в области от 66 до 81 0 С разница значений интегрального коэффициента положительного изменения параметров составляет всего 0,15 %.

Заключение

Установленные закономерности изменения показателей дизеля ЯМЗ-8424 в зависимости от температуры НВ позволяют утверждать, что целесообразные значения этой температуры с точки зрения «компромисса» между мощностными, экономическими показателями, механической, тепловой нагруженностью и дымностью отработавших газов лежат в диапазоне 66-81 0 C.

Список литературы:

1. Автомобильные двигатели с турбонаддувом / Н.С. Ханин и др. - М.: Машиностроение, 1991. - 336 с. 2. Кукис В.С. Ю.Л. Попов, Г.А. Берестнев. Обеспечение оптимальной температуры свежего заряда в комбинированных ДВС при их работе на неустановивщихся режимах, режимах малых нагрузок и холостого хода. Актуальные проблемы теории и практики современного двигателестроения // Тр Международной науч.-техн. конф. - Челябинск, 2006. - С 207-280. 3. Разношинская А.В. Повышение эффективности утилизации теплоты и нейтрализации отработавших газов поршневых ДВС путем демпфирования колебаний их температуры: Дис. ...канд. техн. наук. - Челябинск, 2005. - 158 с. 4. Нефедов Д.В. Использование теплоты отработавших газов для сннижения токсичности поршневых двигателей внутреннего сгорания. Дис. ...канд. техн. наук. - Рязань, 2003. - 127 с. 5. Романов В.А. Обеспечение оптимальной температуры наддувочного воздуха при работе дизеля на различных режимах // Транспорт Урала. - №3. - 2007. - С. 17-21.

УДК 621.436.038

А.Н. Врублевский, канд. техн. наук, А.В. Грицюк, канд. техн. наук, Г.А. Щербаков, инж., А.В. Денисов, инж., С.Б. Сафонов, инж.

РЕЗУЛЬТАТЫ БЕЗМОТОРНЫХ ИСПЫТАНИЙ ФОРСУНКИ ДЛЯ ДВУХФАЗНОГО ВПРЫСКИВАНИЯ ТОПЛИВА

Введение

Наряду с внедрением топливных систем аккумулирующего типа, остается актуальным вопрос создания и модернизации дизельных систем непосредственного действия. Данная статья описывает некоторые этапы создания топливной аппаратуры непосредственного действия для высокооборотного дизеля серии 4ДТНА.

Анализ публикаций

С каждым годом требования к таким системам ужесточаются. И можно утверждать, что резервы их совершенствования почти исчерпаны. Так, максимальное давление впрыскивания топлива у лучших мировых образцов составляет 100 МПа и более, а целый ряд конструктивных решений [1, 2] позволяет без использования электроники получить различные законы топливоподачи. К сожалению, обеспечение оптимального закона подачи для каждого режима работы автотракторного высокооборотного дизеля — сложная задача. Поэтому разработчики, как правило, оптимизируют топливоподачу на определенном режиме (например, холостого хода [2]) и при этом стараются не ухудшить показатели в остальном рабочем диапазоне дизеля. В [3] предложено для обеспечения двухфазного впрыскивания использовать форсунку с