скими показателями, механической, тепловой нагруженностью и дымностью отработавших газов лежат в диапазоне 66-81 0 C.

Список литературы:

1. Автомобильные двигатели с турбонаддувом / Н.С. Ханин и др. - М.: Машиностроение, 1991. - 336 с. 2. Кукис В.С. Ю.Л. Попов, Г.А. Берестнев. Обеспечение оптимальной температуры свежего заряда в комбинированных ДВС при их работе на неустановивщихся режимах, режимах малых нагрузок и холостого хода. Актуальные проблемы теории и практики современного двигателестроения // Тр Международной науч.-техн. конф. - Челябинск, 2006. - С 207-280. 3. Разношинская А.В. Повышение эффективности утилизации теплоты и нейтрализации отработавших газов поршневых ДВС путем демпфирования колебаний их температуры: Дис. ...канд. техн. наук. - Челябинск, 2005. - 158 с. 4. Нефедов Д.В. Использование теплоты отработавших газов для сннижения токсичности поршневых двигателей внутреннего сгорания. Дис. ...канд. техн. наук. - Рязань, 2003. - 127 с. 5. Романов В.А. Обеспечение оптимальной температуры наддувочного воздуха при работе дизеля на различных режимах // Транспорт Урала. - №3. - 2007. - С. 17-21.

УДК 621.436.038

А.Н. Врублевский, канд. техн. наук, А.В. Грицюк, канд. техн. наук, Г.А. Щербаков, инж., А.В. Денисов, инж., С.Б. Сафонов, инж.

РЕЗУЛЬТАТЫ БЕЗМОТОРНЫХ ИСПЫТАНИЙ ФОРСУНКИ ДЛЯ ДВУХФАЗНОГО ВПРЫСКИВАНИЯ ТОПЛИВА

Введение

Наряду с внедрением топливных систем аккумулирующего типа, остается актуальным вопрос создания и модернизации дизельных систем непосредственного действия. Данная статья описывает некоторые этапы создания топливной аппаратуры непосредственного действия для высокооборотного дизеля серии 4ДТНА.

Анализ публикаций

С каждым годом требования к таким системам ужесточаются. И можно утверждать, что резервы их совершенствования почти исчерпаны. Так, максимальное давление впрыскивания топлива у лучших мировых образцов составляет 100 МПа и более, а целый ряд конструктивных решений [1, 2] позволяет без использования электроники получить различные законы топливоподачи. К сожалению, обеспечение оптимального закона подачи для каждого режима работы автотракторного высокооборотного дизеля — сложная задача. Поэтому разработчики, как правило, оптимизируют топливоподачу на определенном режиме (например, холостого хода [2]) и при этом стараются не ухудшить показатели в остальном рабочем диапазоне дизеля. В [3] предложено для обеспечения двухфазного впрыскивания использовать форсунку с

дополнительным поршнем. Ожидаемый от использования данной форсунки эффект заключается в разделении цикловой порции топлива на две части - предварительную и основную. Численное моделирование показало, что данная форсунка может быть настроена на двухфазную подачу топлива на холостом ходу. При этом на режиме номинальной мощности характер нарастания давления примет ступенчатый вид, а максимальное давление впрыскивания увеличится на 20-30%. Такие характеристики впрыскивания способствуют уменьшению шума работы дизеля, а также снижению вредных выбросов с отработавшими газами.

Цель и постановка задачи

Цель данной работы — определить эффективность применения форсунки с дифференциальным поршнем для организации двухфазной подачи топлива на основных режимах работы дизеля 4ДТНА. А также угочнить конструктивные и регулировочные параметры данной форсунки. Для достижения данной цели необходимо разработать методику и провести безмоторные испытания опытного образца топливной системы. Именно это является задачей данной работы.

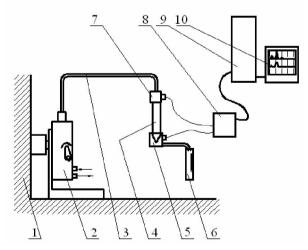
Объект исследования

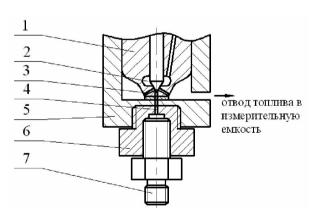
В работе [3] описаны принцип действия и результаты расчетного исследования, которое являлось первым этапом разработки форсунки для двухфазного впрыскивания. Согласно полученным рекомендациям разработана конструкторская документация и изготовлен опытный образец форсунки (рис. 1).

Описание методики эксперимента

Оценить эффективность предложенного способа организации двухфазного впрыскивания, уточнить конструктивные и регулировочные параметры опытной форсунки, а также обеспечить ее стабильную работу возможно по результатам безмоторных испытаний. Для проведения экспериментального исследования топливная система (ТС) была укомплектована топливным насосом высокого давления (ТНВД) с нагнетательным клапаном двойного действия, диаксиальным приводом плунжерной пары с диаметром плунжера 8 мм. Топливопровод высокого давления, соединяющий ТНВД и форсунку, имел длину 420 мм и внутренний диаметр 1,1 мм. ТС установлена на стенде КИ 22206-02 лаборатории топливной аппаратуры КП ХКБД. Измерительная схема стенда представлена на рис. 2.

Рис. 1. Форсунки для двухфазного впрыскивания топлива




Рис. 2. Измерительная схема:

1 - топливный стенд; 2 - ТНВД; 3 - топливопровод высокого давления; 4 - форсунка; 5 - датчик давления топлива после распылителя; 6 - мерный стакан; 7 - датчик давления топлива; 8 - блок усилителей; 9 - системный блок с АЦП; 10 - дисплей

Электрическая измерительная схема состоит из датчиков давления 5, 7, соединенных при помощи кабелей с усилителем 8 и осциллографом 9, 10. Для регистрации параметров топливоподачи использовался аналогово-цифровой преобразователь (АЦП) L-783 фирмы L-Card (г. Москва) [4].

Плата L-783 устанавливается в системный блок компьютера. Обработка поступающего с АЦП сигнала производилась при помощи лицензионной версии программы PowerGraph 3.1 [5].

При проведении исследований характеристика впрыскивания определялась по осциллограммам давления P_a . Измерение давления P_a производилось при помощи пьезоэлектрического датчика T6000, установленного в специальный адаптер 5 (рис. 3). Основным условием успешного применения такого решения является минимизация объема канала 4. В данном случае объем канала 4 составил 18 мm^3 . Проведенные расчеты показали, что такое увеличение объема приводит к занижению действительной величины P_a на 3-5% и не искажает характер изменения данного давления. Следует отметить, что впрыскивание топлива при измерении осуществляется через штатные сопловые отверстия 3.

Puc. 3 Схема установки датчика давления впрыскивания:

1 - распылитель, 2 - карман распылителя, 3 - сопловые отверстия, 4 - колодец распылителя, 5 - адаптер, 6 - штуцер, 7 - пьезодатчик Т6000. Объёмный расхода топлива, выходящего в единицу времени из сопловых отверстий распылителя, определялся с помощью выражения (1), полученного из уравнения Бернулли для несжимаемой жидкости.

$$Q = \mu F_c \cdot \sqrt{\frac{2}{\rho} (P_a - P_u)},\tag{1}$$

где µ - коэффициент расхода;

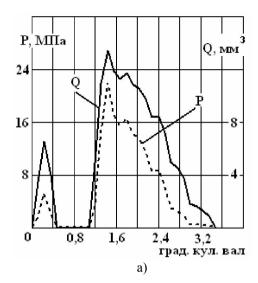
 F_c - суммарная площадь поперечных сечений сопловых отверстий;

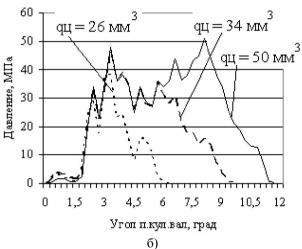
ρ - плотность топлива;

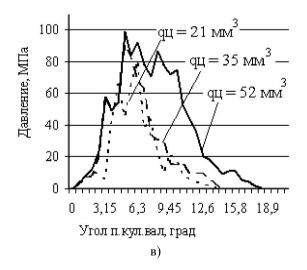
 P_{a} - давление впрыскивания:

 $P_{\it u}$ - давление среды, в которую впрыскивается топливо.

Величина μF_c принималась постоянной, по результатам проливки распылителя равной 0,141 мм². Плотность ρ топлива, входящая в уравнение (1), в зависимости от уровня давления P_a определялось по известным эмпирическим соотношениям [6].


Результаты эксперимента


Результаты обработки осциллограммы — характеристика впрыскивания, для режима холостого хода дизеля 4ДТНА2 (частота вращения вала ТНВД $n=400~\mathrm{Muh}^{-1}$) представлены на рис. 4-а.


Анализ осциллограмм (рис. 4) показывает, что на режиме холостого хода применение форсунки с дифференциальным поршнем позволяет разделить процесс топливоподачи на две фазы.

Предварительную – с величиной запальной дозы топлива около 2 мм 3 и, следующую через 1,1 $^{\circ}$ поворота кулачкового вала ТНВД, основную подачу.

На режимах частичной нагрузки, например $n=1000~\text{мин}^{-1}$ (см. рис. 4-б) основная фаза топливоподачи следует после предварительной без разрыва. Продолжительность предварительной фазы составляет от 1,5° поворота кулачкового вала ТНВД на $n=1000~\text{мин}^{-1}$ до 1,8° на $n=1500~\text{мин}^{-1}$.

Характерными особенностями протекания процесса топливоподачи на режимах номинальной частоты вращения ТНВД n = 2100 мин⁻¹ является переход ступенчатого переднего фронта впрыскивания при цикловых менее 30 мм³ в пологий при больших величинах пикловых.

По сравнению со штатной, в исследуемой ТС уровень максимального и среднего давления впрыскивания на всех режимах увеличивается на 10 – 30 %.

Так, например, если для штатной ТС при $n=1500~{\rm Muh}^{-1}$ характерная величина максимального P_a равна 45 МПа [3], то для модернизированной — до 78 МПа.

На режиме n = 2100 мин $^{-1}$, $q_{\rm u}$ = 52 мм 3 применение форсунки с дифференциальным поршнем позволяет увеличить максимальное давление впрыскивания с 82 МПа (штатная ТС) до 100 МПа, при этом среднее давление впрыскивания увеличивается с 55 до 78 МПа.

Усовершенствование конструкции форсунки

При математическом моделировании (и эксперимент это подтвердил) выяснилось, что оптимальная величина диаметра $d_{\partial u \phi}$ поперечного сечения дифференциальной площадки поршня находится в малых допусках. Так, отклонение от оптимального размера $d_{\partial u \phi}$ на величину более \pm 0,15 мм приводит к потере ожидаемого эффекта разделения подачи на предварительную и основную. В связи с этим возникает две проблемы. Первая - технологическая - точность изготовления прецизионной пары поршенькорпус. Вторая — изменение диаметра $d_{\partial u \phi}$ по мере износа во время эксплуатации. Для решения данных проблем предложено запорную часть поршня выпроблем предложено запорную часть поршня вы

полнять аналогично игле распылителя [7] из двух конусов (рис. 5).

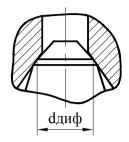


Рис. 5. Запорный конус.

Такое исполнение обеспечит постоянную площадь запорного конуса в процессе износа.

Заключение

На безмоторной установке проведено экспериментальное исследование форсунки с дифференциальным поршнем.

Показано, что применение разработанной форсунки обеспечивает двухфазную топливоподачу на частичных режимах и режиме холостого хода дизелей серии 4ДТНА, а также пологий передний фронт нарастания давления на номинальном режиме.

Испытания подтвердили, что применение форсунки с дифференциальным поршнем обеспечивает увеличение максимального давления впрыскивания на 10-30 %. Для стабилизации характеристики впрыскивания запорную часть поршня форсунки предложено изготовлять из двух конусов.

Список литературы:

1. Пат. RU 2196246 Система впрыскивания топлива. 10.01.2003 Никол Стьюарт-Уилльям. Роберт Бош ГМБХ. 2. Врублевский А.Н., Денисов А.В., Григорьев А.Л., Грицюк А.В., Щербаков Г.А. Оценка возможности ступенчатого впрыскивания топлива в цилиндр дизеля 4ДТНА с помощью двухпружинной форсунки // Двигатели внутреннего сгорания. ХПИ – 2006. - №2. - с. 79 - 84. 3. Врублевский А.Н., Грицюк А.В., Щербаков Г.А., Денисов А.В. Разработка и исследование форсунки для двухфазного впрыскивания топлива в цилиндр высокооборотного дизеля // Двигатели внутреннего сгорания. ХПИ – 2006. - №2. - cmp. 97 - 101. 4. Платы L-761, L-780 и L-783, Texническое описание и руководство программиста. ЗАО "Л-Кард". 2003. 113 с. 5. Электронная система помощи программы PowerGraph 3.1. 6. Фомин Ю.Я. Гидродинамический расчет топливных систем дизелей с использованием ЭЦВМ. – М.: Машиностроение, 1973. – 144 с. 7. Грехов Л.В., Иващенко Н.А., Марков В.А. Топливная аппаратура и системы управления дизелей: Учебник для вузов. – М.: Легион - Авто-∂ama, 2004. – 344 c.